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Trees

(Binary Search Trees)
Chapter 4 in Weiss

CSE 326
Data Structures
Ruth Anderson

1/25/2010

Today’s Outline

• Announcements
– Written HW #3 due next Friday, 1/29

– Project 2A due next Monday, 2/1

• Today’s Topics: 
– Priority Queues

• Binomial Queues

– Dictionary ADT
• Binary Search Trees
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ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

Remember decreaseKey?

• Priority Queue
– Insert

– DeleteMin
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The Dictionary ADT:
A Modest Few Uses

Associates a key with a value

Main operations:  Find, Insert, Delete

Examples:

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Tree Calculations

Recall: height is max number 
of edges from root to a leaf

Find the height of the tree...

t

runtime:
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Tree Calculations Example
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How high is this tree?
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More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for 
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root
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(an expression tree)

Activity
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Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

Which one is this?
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Binary Trees
• Binary tree is

– a root
– left subtree(maybe empty) 
– right subtree(maybe empty) 

• Representation:
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Binary Tree: Representation
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Binary Tree: Special Cases
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Binary Tree: Some Numbers!

For binary tree of height h:
– max # of leaves: 

– max # of nodes:

– min # of leaves:

– min # of nodes:

Activity
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The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes 
called the “Map ADT”

• rea
Ruth Anderson 
OH: MW 3:30
CSE 360

• dcjones
Daniel Jones
OH: F 1:30-2:30
CSE 216

insert(rea, ….)

find(dcjones)
• dcjones

Daniel Jones, …
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The Dictionary ADT:
A Modest Few Uses

Associates a key with a value

Main operations:  Find, Insert, Delete

Examples:

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind
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Binary Search Tree Data Structure
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• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
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Are these BSTs?
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Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}
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Runtime:
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Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else 

root = root.right;

}

return root;

}
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Runtime:
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Insert in BST

2092
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Runtime:

Insert(13)
Insert(8)
Insert(31)

Activity
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BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into 
an initially empty BST. 

Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc. 
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Bonus: FindMin/FindMax

• Find minimum

• Find maximum
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Deletion in BST
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Why might deletion be harder than insertion?



1/25/2010 25

Lazy Deletion

Instead of physically deleting 
nodes, just mark them as 
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)
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Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.  
Then “fix” the tree so that it is still a binary search 
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children
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Non-lazy Deletion – The Leaf Case
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Delete(17)
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Deletion – The One Child Case
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Delete(15)
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Deletion – The Two Child Case
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Delete(5)

What can we replace 5 with?
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Deletion – The Two Child Case

Idea: Replace the deleted node with a value 
guaranteed to be between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!
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Finally…

3092
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10

7 replaces 5

Original node containing
7 gets deleted
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Balanced BST

Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(logn)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isO(log n)        – strong enough!

2. is easy to maintain – not too strong!
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Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equal height
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Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

4. Left and right subtrees of every node
have equal height

Activity
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The AVL Balance Condition

Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤≤≤≤ balance(x) ≤≤≤≤ 1,   for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
– Using single and double rotations
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst case depth is
O(logn)

Ordering property

– Same as for BST 15
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Proving Shallowness Bound
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Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = O(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes
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Testing the Balance Property
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NULLs have 
height -1

We need to be able to:

1.

2.

3.
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An AVL Tree
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