Trees

(Binary Search Trees)
Chapter 4 in Weiss

CSE 326
Data Structures
Ruth Anderson

1/25/2010

Today’s Outline

* Announcements
— Written HW #3 due next Friday, 1/29
— Project 2A due next Monday, 2/1

* Today's Topics:
— Priority Queues
+ Binomial Queues
— Dictionary ADT
+ Binary Search Trees

1/25/2010

Binomial Queue deleteMin ADTs Seen So Far

 Priority Queue

@ @%@ ® Q
© @) OIONE) + Stack
— Push — Insert
@ ® &) © - Pop — DeleteMin
® * Queue Remember decreaseKey?

1/25/2010

Activity

— Enqueue
— Dequeue

1/25/2010

The Dictionary ADT:
A Modest Few Uses

Associates a key with a value
Main operations: Find, Insert, Delete

Tree Calculations

Recall height is max number
of edges from root to a leaf

Examples: Find the height of the tree...
* Networks : Router tables
¢ Operating systems : Page tables
« Compilers : Symbol tables

Probably the most widely used ADT!

1/25/2010

runtime

1/25/2010

Tree Calculations Example

/®\
500¢

O,
O ®
W)

How high is this tree?

1/25/2010 7

More Recursive Tree Calculations:
Tree Traversals O,

A traversalis an order for ® &
visiting all the nodes of a tree
@®

(an expression treq
Three types:

* Pre-order Root, left subtree, right subtree
« In-order Left subtree, root, right subtree

« Post-order Left subtree, right subtree, root

1/25/2010

Activity

Traversals

voi d traverse(BNode t){
if (t !'= NULL)
traverse (t.left);
print t.elenent;
traverse (t.right);

}

Which one is this?

1/25/2010 9

Binary Trees
* Binary tree is
— aroot

— left subtredmaybe empty) 0
— right subtreémaybe empty)

@ ©
ool

* Representation:

Data

left right
pointer| pointer|

1/25/2010

Binary Tree: Representation

A
left _nght
B c ® ©
left |right left [right
ointepointer pointepointe] 0 e G

D E

left |right left |right
ointepointer pointepointe)

1/25/2010 11

Binary Tree: Special Cases

® © ® © ® ©
OO 00O OGO
\
Complete Tree Perfect Tree
® O
Full Tree

1/25/2010 12

Binary Tree: Some Numbers!

For binary tree of height:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

1/25/2010 13

Activity

The Dictionary ADT:
A Modest Few Uses

Associates a key with a value
Main operations: Find, Insert, Delete

Examples:

¢ Networks : Router tables
¢ Operating systems : Page tables
e Compilers : Symbol tables

Probably the most widely used ADT!

1/25/2010 15

Binary Search Tree Data Structurt

 Structural property
— each node has2 children
— result:
« storage is small
« operations are simple
« average depth is small

« Order property

— all keys in left subtree smaller
than root's key

— all keys in right subtree larger
than root’s key

— result: easy to find any given key

* What must | know about what | store?
1/25/2010 17

\V

The Dictionary ADT

e Data:
_ . * rea
a set of . insertfea, ...) Ruth Anderson
(key, value) pairs ——— OH: MW 3:30
CSE 360
¢ Operations: + dcjones
— Insert (key’ value) X . Daniel Jones
) «find(dcjone$ OH: F 1:30-2:30
— Find (key) + dcjones CSE 216
Daniel Jones, ...
— Remove (key)
The Dictionary ADT is sometimes
1125/2010 called the ‘Map ADT” 14

Implementations

insert find delete
 Unsorted Linked-list
» Unsorted array
« Sorted array
12512010 1

Are these BSTs?

1/25/2010 18

Activity

Find in BST, Recursive

Node Fi nd(Ohj ect key,

Node root) {
if (root == NULL)
e return NULL;
if (key < root.key)
9 @ return Find(key,

el se
return root;

Runtime: }

root.left);
else if (key > root.key)

@ @ return Find(key,
root.right);

1/25/2010

19

Find in BST, lterative

Node Fi nd(Cbj ect key,
Node root) {

while (root !'= NULL &&
root. key != key) {
if (key < root.key)
root = root.left;
el se
root = root.right; @ @
}

o

return root;

}

Runtime:

1/25/2010 20

Insert in BST

- Insert(13)
Insert(8)
® Insert(31)
® ©
@ ®

Runtime:

1/25/2010

21
Activity

BuildTree for BST

e Suppose keys 1, 2, 3,4, 5,6, 7, 8,9 are indante

an initially empty BST.
Runtime depends on the order!
— in given order

— in reverse order

— median first, then left median, right median, etc.

1/25/2010 22

Bonus: FindMin/FindMax

¢ Find minimum

¢ Find maximum

1/25/2010

23

Deletion in BST

29
© é@
Why might deletion be harder than insertion?

1/25/2010 24

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler /@D\

+ physical deletions done in batches (5)
+ some adds just flip deleted flag
@ @

— extra memory for deleted flag
— many lazy deletions slow finds

— some operations may have to be

modified (e.g., min and max)
1/25/2010 25

Non-lazy Deletion — The Leaf Case

Delete(L7)

1/25/2010 27

Deletion — The Two Child Case

Deletep)

What can we replacewith?

1/25/2010 29

Non-lazy Deletion

* Removing an item disrupts the tree structure.
« Basic ideafind the node that is to be removed.
Then “fix” the tree so that it is still a binary seh
tree.
e Three cases:
— node has no children (leaf node)
— node has one child
— node has two children

1/25/2010 26

Deletion — The One Child Case

Delete(L5)

1/25/2010 28

Deletion — The Two Child Case

Idea: Replace the deleted node with a value
guaranteed to be between the two child subtrees!

Options:
« succfrom right subtree: findMin(tight)
e predfrom left subtree : findMax(eft)

Now delete the original node containisigccor pred
« Leaf or one child case — easy!

1/25/2010 30

Finally...

7 replaces 5 ©
@ @

Original node containing
7 gets deleted

1/25/2010 31

Balanced BST

Observation
¢ BST: the shallower the better!
¢ For a BST withn nodes

— Average height is O(log)

— Worst case height is 6)

¢ Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution Require éBalance Conditionthat
1. ensures depth @&logn) — strong enough!

2. is easy to maintain — not too strong!
1/25/2010 32

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equaheight

1/25/2010 33

Potential Balance Conditions

3. Left and right subtrees efrery node
have equal number of nodes

4. Left and right subtrees efrery node
have equaheight

1/25/2010 34
Activity

The AVL Balance Condition

Left and right subtrees @very node
have equaheightsdiffering by at most 1

Define: balancex) = heightk.left) — heightk.right)
AVL property: —1 < balancek) <1, for every nodex

» Ensures small depth

— Will prove this by showing that an AVL tree of gbt
h must have a lot of (i.e. O{ nodes

» Easy to maintain

— Using single and double rotations
1/25/2010 35

The AVL Tree Data Structure

Structural properties
1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst case depth is
O(logn)

Ordering property
— Same as for BST

1/25/2010 36

1/25/2010 37

Proving Shallowness Bound

' Let S(h) be the min # of nodes in an AVL tree of heighth=4
| AVL tree of heighth with the min # of nodes

| Claim: S(h) = S(h-1) +S(h-2) + 1 ® /

| Solution of recurrences(h) = O(2) ™
| (like Fibonacci numbers) ©
@ ®

@@@1

Testing the Balance Property

We need to be able to:

NULLs have
height- 1

1/25/2010 39

An AVL Tree
3 10 |data
3 height
2 P ‘ children
5 7\
0 11 0
2 9 3
0 0
7
1/25/2010 40

