Today’s Outline

- Announcements
 - Written HW #2 due NOW
 - Project 2A due next Friday, 1/29
 - Written HW #3 due next Monday, 2/1

- Today’s Topics:
 - Priority Queues
 - Skew Heaps
 - Binomial Queues

Yet Another Data Structure: Binomial Queues

- Structural property
 - Forest of binomial trees with at most one tree of any height
 - What’s a forest?
 - What’s a binomial tree?

- Order property
 - Each binomial tree has the heap-order property

The Binomial Tree, \(B_h \)

- Height \(h \)
- Exactly \(2^h \) nodes
- \(B_h \) is formed by making \(B_{h-1} \) a child of another \(B_{h-1} \)
- Root has exactly \(h \) children

The Binomial Tree, \(B_h \)

- Number of nodes at depth \(d \) is binomial coeff. \(\binom{h}{d} \)
 - Hence the name; we will not use this last property
- Every subtree of a binomial tree is a binomial tree

Binomial Queues

- Structural property
 - Forest of binomial trees
 - At most one tree of any height

- Order property
 - Each binomial tree has the heap-order property
Binomial Queue with \(n \) elements

Binomial Q with \(n \) elements has a unique structural representation in terms of binomial trees!

Every binomial Q with \(n \) elements has this structure

Write \(n \) in binary: \(n = 1101 \) (base 2) = 13 (base 10)

Properties of Binomial Queue

- At most one binomial tree of any height
- \(n \) nodes \(\Rightarrow \) binary representation is of size \(? \)
- \(\Rightarrow \) deepest tree has height \(? \)
- \(\Rightarrow \) number of trees is \(? \)

Define: \(\text{height(forest } F) = \max_{\text{tree } T \in F} \{ \text{height}(T) \} \)

\(\text{Binomial Q with } n \text{ nodes has height } \Theta(\log n) \)

Operations on Binomial Queue

- Will again define \textit{merge} as the base operation
 - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently?
 - decreaseKey?
- What about findMin?

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For \(k \) from 1 to maxheight {
 a. \(m \leftarrow \text{total number of } B_k\text{'s in the two BQs} \)
 b. if \(m=0 \): continue; \(0+0 = 0 \)
 c. if \(m=1 \): continue; \(1+0 = 1 \)
 d. if \(m=2 \): combine the two \(B_k\text{'s to form a } B_{k+1} \)
 \(1+1 = 0+c \)
 e. if \(m=3 \): retain one \(B_j \) and combine the other two to form a \(B_{k+1} \)
 \(1+1+c = 1+c \)
 }

Claim: When this process ends, the forest has at most one tree of any height

Example: Binomial Queue Merge

H1:
H2:
Example: Binomial Queue Merge

H1:
H2:

Example: Binomial Queue Merge

H1:
H2:

Example: Binomial Queue Merge

H1:
H2:

Example: Binomial Queue Merge

H1:
H2:

Example: Binomial Queue Merge

H1:
H2:

Complexity of Merge

Constant time for each tree
Max height is:
Number of trees is:
⇒ worst case running time = $\Theta()$

Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

runtime
Worst case complexity: same as merge
O()

Average case complexity: O(1)
Why?? Hint: Think of adding 1 to 1101
deleteMin in Binomial Queue
Similar to leftist and skew heaps….

deleteMin: Example

find and delete smallest root

merge BQ (without the shaded part) and BQ'

Result:

runtime: