Priority Queues
(D-heaps, Leftist, & Skew heaps)
Chapter 6 in Weiss

CSE 326
Data Structures
Ruth Anderson

Today’s Outline

• Announcements

• Today’s Topics:
 – Priority Queues
 • Binary Min Heaps
 • D-Heaps
 • Leftist Heaps

Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

Representing Complete Binary Trees in an Array

Implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

A Solution: d-Heaps

• Each node has d children
• Still representable by array
• Good choices for d:
 – (choose a power of two for efficiency)
 – fit one set of children in a cache line
 – fit one set of children on a memory page/disk block
Operations on d-Heap

- Insert : runtime =
- deleteMin: runtime =

Priority Queues
(Leftist Heaps)

One More Operation
- Merge two heaps. Ideas?

New Operation: Merge
Given two heaps, merge them into one heap
- first attempt: insert each element of the smaller heap into the larger.
 - runtime:
- second attempt: concatenate binary heaps’ arrays and run buildHeap.
 - runtime:

Leftist Heaps
Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length
null path length (npl) of a node $x = $ the number of nodes between x and a null in its subtree
OR
npl(x) = min distance to a descendant with 0 or 1 children
- $npl(null) = -1$
- $npl(leaf, aka zero children) = 0$
- $npl(node with one child) = 0$

Equivalent definitions:
1. $npl(x)$ is the height of largest perfect subtree rooted at x
2. $npl(x) = 1 + min\{npl(left(x)), npl(right(x))\}$
Leftist Heap Properties

• Heap-order property
 – parent’s priority value is ≤ to childrens’ priority values
 – result: minimum element is at the root

• Leftist property
 – For every node \(x \), \(np(l(left(x))) \geq np(right(x)) \)
 – result: tree is at least as “heavy” on the left as the right

Are leftist trees…
 complete?
 balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)
 Pick a shorter path: \(D_1 < D_2 \)
 Say it diverges from right path at \(x \)
 \(np(L) \leq D_1 \) because the path of length \(D_1 \) to null
 \(np(R) \geq D_2 \) because every node on right path is leftist

Leftist property at \(x \) violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has \(r \) nodes, then the tree has at least \(2^r - 1 \) nodes.

Proof: (By induction)
 Base case: \(r=1 \). Tree has at least \(2^1 - 1 = 1 \) node
 Inductive step: assume true for \(r' < r \). Prove for tree with right path at least \(r \).
 1. Right subtree: right path of \(r-1 \) nodes
 \(\Rightarrow 2^{r-1} - 1 \) right subtree nodes (by induction)
 2. Left subtree: also right path of length at most \(r-1 \) (by previous slide)
 \(\Rightarrow 2^{r-1} - 1 \) left subtree nodes (by induction)
 Total tree size: \((2^{r-1} - 1) + (2^{r-1} - 1) + 1 = 2^r - 1 \)

Why do we have the leftist property?

Because it guarantees that:
• the right path is really short compared to the number of nodes in the tree
• A leftist tree of \(N \) nodes, has a right path of at most \(\log(N+1) \) nodes

Idea – perform all work on the right path

Merge two heaps (basic idea)

• Put the smaller root as the new root,
• Hang its left subtree on the left.
• Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- \(\text{merge}(T_1, T_2) \) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1 \) and \(T_2 \)

\[
\begin{array}{c}
T_1 \\
L_1 \ \\
R_1 \\
T_2 \\
L_2 \ \\
R_2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{merge} \\
L_3 \ \\
R_3 \\
\end{array}
\]

Merge Continued

- If \(npl(R’) > npl(L_1) \)

\[
\begin{array}{c}
L_1 \\
R’ \ \\
R’ = \text{Merge}(R_2, T_3) \\
L_3 \\
\end{array}
\]

runtime:

- \(a \)

Merge Example

- \(\text{merge} \)

Merge Two Leftist Heaps

- \(\text{merge} \)

Sewing Up the Example

- \(\text{merge} \)

Finally…

- \(\text{merge} \)
Other Heap Operations

- insert ?
- deleteMin ?

Operations on Leftist Heaps

- **merge** with two trees of total size n: $O(\log n)$
- **insert** with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap
- **deleteMin** with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees

Leftist Heaps: Summary

Good
-
-

Bad
-
-

Amortized Time

am-or-tized time:
Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, **amortized time** per operation is $O(\log N)$

Difference from average time:

Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch

Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- merge *always* switches children when fixing right path
- amortized time for: merge, insert, deleteMin = $O(\log n)$
- however, worst case time for all three = $O(n)$

Merging Two Skew Heaps

Only one step per iteration, with children *always* switched
Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```

Runtime Analysis:
Worst-case and Amortized
- No worst case guarantee on right path length!
- All operations rely on merge

⇒ worst case complexity of all ops =
- Amortized Analysis (Chapter 11)
- Result: \(M \) merges take time \(M \log n \)

⇒ amortized complexity of all ops =

Comparing Priority Queues
- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps