1/13/2010

Priority Queues

(Today: Binary Min Heaps)
Chapter 6 in Weiss

CSE 326
Data Structures
Ruth Anderson

Winter 2010

Today’s Outline

¢ Announcements
— Project #1, due 11pm Wed Jan 13.

— Written Assignment #1 posted, datethe beginning of
class Friday Jan 15.

« Today’s Topics:
— Asymptotic Analysis
— Priority Queues
« Binary Min Heap

1/13/2010 2

¢ Calculating series:

e.g.

1. Brute force (Section 1.2.3) 1. Expansion (example in class
2. Induction (Section 1.2.5)
3. Memorize simple ones!

1/13/2010 3

The One Page Cheat Sheet

» Solving recurrences:
_n(n+1) eg. TO)=TM/2)+1

2=

2. Induction (Section 1.2.5)
3. Telescoping (later...)

» General proofs (Section 1.2.5)
e.g. How many edges in a tree with n nodes?
1. Counterexample
2. Induction
3. Contradiction

Simplifying Recurrences

Given a recursive equation for the running time,
can sometimes simplify it for analysis.

e For anupper-boundinalysis, can optionally simplify
to somethindarger, e.g.

T(n) =T(floor(n/2)) +1 to T(N)<T(n/2)+1

¢ For alower-boundanalysis, can optionally simplify to
somethingsmaller e.g.

TN)=2T@/2+5)+1 to T(N)=>2T(MW2)+1

1/13/2010 4

“O(f(n)) is a set
of functions”

Set Notation

<
@)f
R

So we say both
100 logn =0O(r?) and

1/13/2010 1007 log n (7O ?)

Set Notation

Set notation allows us to|
formalize our intuition
Oo(r) c ()

1/13/2010

Processor Scheduling

1/13/2010 7

Priority Queue ADT

« Checkout line at the supermarket ???
 Printer queues ???

* operations: insert, deleteMin

1/13/2010 8

Priority Queue ADT

1. PQueue data collection of data withpriority

2. PQueue operations

— insert
— deleteMin
(also: create, destroy, is_empty)

3. PQueue property for two elements in the
gueuex andy, if x has dower priority value
thany, x will be deleted beforg

1/13/2010 9

Applications of the Priority Q

Select print jobs in order of decreasinggth
Forward packets on network routers in order g
urgency

Select mostrequentsymbols for compression
Sort numbers, pickingiinimumfirst

Anything greedy

1/13/2010 10

Implementations of Priority Queue A

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

1/13/2010 11

Tree Review

root(T):
leavesT):
children(B):
paren{H):
siblingqE):
ancestor§F):
descenden(s):
subtre€C):

1/13/2010 12

More Tree Terminology
TreeT
deptHT):

heigh{G):

® ©
degreéB): @@@/@)\

branching factofT): @
700N
QOOB®

1/13/2010 13

Some More Tree Terminology

T is binaryif ... A/@)QeT

T isn-aryif ...

660

How deep is a complete tree witm nodes?
1/13/2010 14

T is completdf ...

Brief interlude: Some Definitions:

A Perfect binary tree — A binary tree with all
leaf nodes at the same depth. All internal
nodes have 2 children.

height h
2h+1_ 1nodes
2h— 1 non-leaves

@
/% b\\@fh leaves
Sod B> @ 1> o>

1/13/2010 15

Full Binary Tree

» A binary tree in which each node has
exactly zero or two children.

* (also known as a proper binary tree)
* (we will use this later for Huffman trees)

1/13/2010 16

Binary Heap Properties

1. Structure Property
2. Ordering Property

1/13/2010 17

HeapStructure Property

* A binary heap is aomplete binary tree.

Complete binary tree— binary tree that is
completely filled, with the possible exception of
the bottom level, which is filled left to right.

Examples

£
Palre

1/13/2010 18

Representing Complete
Binary Trees in an Array

From node:

left child:
right child:
parent:

implicit (array) implementation:

[l[afsfclofe[rlefn][i]ofr]Lt] |
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1/13/2010 19

Why better than tree with pointersg”

1/13/2010 20

JJ

HeapOrder Property

Heap order property: For every non-root
node X, the value in the parent of X is less
than (or equal to) the value in X.

® D
@ @ @D @
@b & o @ 6> Q@
G @Y
not a heap

Heap Operations

e findMin:
* insert(val): percolate up.
« deleteMin: percolate down.

>

1/13/2010 22

Heap — Insert(val)

Basic Idea:
1. Putval at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

1/13/2010 23

void insert(Object o) {

}

runtime:

Insert pseudo Code (optimized)

int percolateUp(int hole,
Ohject val) {
while (hole > 1 &&
val < Heap[hole/2])
Heap[hol e] = Heap[hol e/ 2] ;
hole /= 2;
}

return hol e;

assert(lisFull());
Si ze++;
newPos =
per col at eUp(si ze, 0) ;
Heap[newPos] = o;

(Java code in book

1/13/2010 24

Insert: percolate up

o
[CORENED QD

@ & @

1/13/2010

Do
©

25

DeleteMin pseudo Cod®ptimized)

bj ect deleteMn() {
assert(!isEnpty());
returnVal = Heap[1];
si ze--;
newPos =
per col at eDown(1,
Heap[si ze+1]);
Heap[newPos] =
Heap[si ze + 1];
return returnval;

rlintime:

}
(Java code in book), return hol e;

1/13/2010

int percol ateDown(int hole,
Cbj ect val) {

while (2*hol e <= size) {

left = 2*hol e;

right = left + 1;

if (right < size &&

Heap[right] < Heap[left])
target = right;

el se
target = left;

if (Heap[target] < val) {
Heap[hol e] = Heap[target];

hole = target;

}

el se
br eak;

27

Insert: 16, 32, 4, 69, 105, 43,p

1/13/2010

29

Heap — Deletemin

Basic Idea:
1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed
1/13/2010 26

DeleteMin: percolate down

1/13/2010 28

Other Priority Queue Operations

» decreaseKey
— given a pointer to an object in the queue, redisqgriority value

Solution: change priority and

* increaseKey
— given a pointer to an object in the queue, in@d@spriority value|

Solution: change priority and

Why do we need gointer? Why not simply data value?

1/13/2010 30

Other Heap Operations

decreaseKey(objPtr, amount):raise the priority of a
object, percolate up

increaseKey(objPtr, amount):lower the priority of a
object, percolate down

remove(objPtr): remove a object, move to top, them
delete. 1) decreaseK@fdjPtr, «)

2) deleteMin()
Worst case Running time for all of these:
FindMax?

ExpandHeap — when heap fills, copy into new space.

1/13/2010 31

Binary Min Heaps (summary)

* insert: percolate up®(log N) time.
« deleteMin: percolate down®(log N) time.

* Build Heap?

1/13/2010 32

BuildHeap: Floyd’'s Method

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property

1/13/2010 33

Buildheap pseudocode

private void buildHeap() {
for (int i =currentSize/2; i >0; i--)
percol ateDown(i);

runtime:

1/13/2010 34

BuildHeap: Floyd's Method
a2 a2

Finally...

@ ,

/ \ /
2
OEOOO

runtime:

1/13/2010 36

