Today’s Outline

• Announcements
 – Written Homework #1, released later today, due Fri, Jan 15th at the beginning of lecture.
• Asymptotic Analysis

Exercise

bool ArrayFind(int array[], int n, int key) {
 // Insert your algorithm here
}

2 3 5 16 37 50 73 75 126

What algorithm would you choose to implement this code snippet?

Analyzing Code

Basic Java operations
Consecutive statements
Conditionals
Loops
Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation

Linear Search Analysis

bool LinearArrayFind(int array[], int n, int key) {
 for(int i = 0; i < n; i++) {
 if(array[i] == key) {
 // Found it!
 return true;
 }
 }
 return false;
}

Best Case:
Worst Case:

Binary Search Analysis

bool BinArrayFind(int array[], int low, int high, int key) {
 // The subarray is empty
 if(low > high) return false;
 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return true;
 } else if(key < array[mid]) {
 return BinArrayFind(array, low, mid-1, key);
 } else {
 return BinArrayFind(array, mid+1, high, key);
 }
}

Best case:
Worst case:
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So … which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets “large”
 - Ignores the effects of different machines or different implementations of the same algorithm

- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 2 \in \Theta(n)$
 - Binary search is $T(n) = 4 \log_2 n + 4 \in \Theta(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime.
Asymptotic Analysis

- Eliminate low order terms
 - $4n + 5 \Rightarrow 0.5 n \log n + 2n + 7 \Rightarrow n^3 + 2n + 3n \Rightarrow$
- Eliminate coefficients
 - $4n \Rightarrow 0.5 n \log n \Rightarrow n \log n$

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently large”, $f(n)$ will be “greater than or equal to” $g(n)$.

Definition of Order Notation

- Upper bound: $T(n) = O(f(n))$ Big-O
 Exist constants c and n' such that $T(n) \leq c f(n)$ for all $n \geq n'$
- Lower bound: $T(n) = \Omega(g(n))$ Omega
 Exist constants c and n' such that $T(n) \geq c g(n)$ for all $n \geq n'$
- Tight bound: $T(n) = \Theta(f(n))$ Theta
 When both hold:
 $T(n) = O(f(n))$
 $T(n) = \Omega(f(n))$

Order Notation: Definition

$O(f(n))$: a set or class of functions $g(n) \in O(f(n))$ iff there exist constants c and n_0 such that:
$g(n) \leq c f(n)$ for all $n \geq n_0$

Example: $g(n) = 1000n$ vs. $f(n) = n^2$
Is $g(n) \in O(f(n))$?
Pick: $n_0 = 1000$, $c = 1$

Order Notation: Example

$O(f(n))$:

Is $g(n) \in O(f(n))$?

$(n^3 + 2n^2)$ for all $n \geq 19$

So $g(n)$ is $O(f(n))$.
Big-O: Common Names

- constant: $O(1)$
- logarithmic: $O(\log n)$ ($\log_2 n, \log n^2$ is $O(\log n)$)
- log-squared: $O(\log n)^2$ ($\log n^2$ is $O(\log n)$)
- linear: $O(n)$
- log-linear: $O(n \log n)$
- quadratic: $O(n^2)$
- cubic: $O(n^3)$
- polynomial: $O(n^k)$ (k is a constant)
- exponential: $O(c^n)$ (c is a constant > 1)

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\omega(f(n))$ is the set of all functions asymptotically strictly greater than $f(n)$
- $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff there exist c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$
 - $g(n) \in o(f(n))$ iff there exist c and n_0 such that $g(n) < c f(n)$ for all $n \geq n_0$

- $g(n) \in \Omega(f(n))$ iff there exist $c > 0$ and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$
 - $g(n) \in \omega(f(n))$ iff there exist c and n_0 such that $g(n) > c f(n)$ for all $n \geq n_0$

- $g(n) \in \Theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>\leq</td>
</tr>
<tr>
<td>Ω</td>
<td>\geq</td>
</tr>
<tr>
<td>Θ</td>
<td>$=$</td>
</tr>
<tr>
<td>o</td>
<td>$<$</td>
</tr>
<tr>
<td>ω</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Pros and Cons of Asymptotic Analysis

Types of Analysis

- bound flavor
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (Θ)

- analysis case
 - worst case (adversary)
 - average case
 - best case
 - "amortized"
Which Function Grows Faster?

\(n^3 + 2n^2 \) vs. \(100n^2 + 1000 \)

Which Function Grows Faster?

\(n^3 + 2n^2 \) vs. \(100n^2 + 1000 \)

Which Function Grows Faster?

\(n^{0.1} \) vs. \(\log n \)

Which Function Grows Faster?

\(n^{0.1} \) vs. \(\log n \)

Which Function Grows Faster?

\(5n^5 \) vs. \(n! \)

Which Function Grows Faster?

\(5n^5 \) vs. \(n! \)
Nested Loops

\[
\begin{align*}
\text{for } i &= 1 \text{ to } n \text{ do} \\
\text{for } j &= 1 \text{ to } n \text{ do} \\
\quad \text{sum} &= \text{sum } + 1 \\
\text{end for} \\
\text{end for} \\
\text{for } i &= 1 \text{ to } n \text{ do} \\
\text{for } j &= 1 \text{ to } n \text{ do} \\
\quad \text{sum} &= \text{sum } + 1 \\
\text{end for} \\
\text{end for}
\end{align*}
\]

16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))

- Eliminate low order terms
- Eliminate constant coefficients

\[
\begin{align*}
16n^3 \log_8(10n^2) + 100n^2 &= O(n^3 \log(n)) \\
16n^3 \log_8(10n^2) &= 16n^3 \log_8(10n) \\
&= n^3 \log_8(10n) \\
&= n^3 \left[\log_8(10) + \log_8(n) \right] \\
&= n^3 \log_8(10) + n^3 \log_8(n) \\
&= n^3 \log_8(n) \\
&= n^2 \log_8(n) \\
&= \log_8(n) \\
&= \log_8(2) \log(n) \\
&= \log(n)
\end{align*}
\]