Today’s Outline

• Announcements
 – Project #1 due Wed, Jan 13 at 11pm, come to section tomorrow with questions.
 – Two emails sent to cse326 mailing list – did you get them?
 – Have you installed Eclipse (or whatever environment you will be using this quarter) and Java yet?
 – Please fill out survey and bring Info sheet to class on Friday.

• Queues and Stacks

• Math Review
 – Proof by Induction
 – Powers of 2
 – Binary numbers
 – Exponents and Logs

Project 1 – Sound Blaster!

Play your favorite song in reverse!

Aim:
1. Implement stack ADT two different ways
2. Use to reverse a sound file

Due: Wed, Jan 13, at 11pm via Catalyst

Mathematical Induction

Suppose we wish to prove that:
For all \(n \geq n_0 \), some predicate \(P(n) \) is true.

We can do this by proving two things:
1. \(P(n_0) \) --- this is called the “basis.”
2. If \(P(k) \) then \(P(k+1) \) -- this is called the “induction step.”

Example: Basis Step

Prove for all \(n \geq 1 \), sum of first \(n \) powers of 2 = \(2^n - 1 \)

\[
2^0 + 2^1 + 2^2 + \ldots + 2^{n-1} = 2^n - 1.
\]

in other words: \[
1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1.
\]

Proof by induction:

Basis with \(n_0 = 1 \):

(left hand side)
(right hand side)

So true for \(n_0 = 1 \)
Example: Inductive Step

- **Induction hypothesis:** (Assume this is true)
 \[1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1 \]
- **Induction step:**
 \[1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2^{k+1} - 1 \]

Therefore if the equation is valid for \(n = k \), it must also be valid for \(n = k+1 \).

- **Summary:** It is valid for \(n=1 \) (basis) and by the induction step it is therefore valid for \(n=2, n=3, \ldots \) It is valid for all integers greater than 0.

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - an \(n \)-bit wide field can represent how many different things?

<table>
<thead>
<tr>
<th># Bits</th>
<th>Patterns</th>
<th># of patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unsigned binary numbers

- For **unsigned** numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is \(2^n - 1 \) where \(n \) is the number of bits in the field
 - The value is \(\sum_{i=0}^{n-1} a_i 2^i \)
 - Each bit position represents a power of 2 with \(a_i = 0 \) or \(a_i = 1 \)
Signed Numbers?

Logarithms and Exponents

- Definition: \(\log_2 x = y \) if and only if \(x = 2^y \)
 - \(8 = 2^3 \), so \(\log_2 8 = 3 \)
 - \(65536 = 2^{16} \), so \(\log_2 65536 = 16 \)
- Notice that \(\log_2 n \) tells you how many bits are needed to distinguish among \(n \) different values.
 - 8 bits can hold any of 256 numbers, for example: 0 to \(2^8 - 1 \), which is 0 to 255
 - \(\log_2 256 = 8 \)

One function that grows very quickly, One that grows very slowly

One function that grows very quickly, One that grows very slowly

What is the minimum height of a binary tree with \(N \) nodes?

Floor and Ceiling

\[
\left\lfloor X \right\rfloor \quad \text{Floor function: the largest integer} \leq X
\]

\[
\left\lceil X \right\rceil \quad \text{Ceiling function: the smallest integer} \geq X
\]

\[
\left\lfloor 2.7 \right\rfloor = 2 \quad \left\lceil -2.7 \right\rceil = -3 \quad \left\lfloor 2 \right\rfloor = 2
\]

\[
\left\lfloor -2.3 \right\rfloor = 3 \quad \left\lceil -2.3 \right\rceil = -2 \quad \left\lceil 2 \right\rceil = 2
\]
Facts about Floor and Ceiling

1. \(x - 1 \leq \lfloor x \rfloor \leq x \)
2. \(x \leq \lfloor x \rfloor < x + 1 \)
3. \(\lfloor x/2 \rfloor + \lfloor x/2 \rfloor = n \) if \(n \) is an integer

Properties of logs

- We will assume logs to base 2 unless specified otherwise.
- \(8 = 2^3 \), so \(\log_2 8 = 3 \), so \(2^{\log_2 8} = \) ________

Show:
- \(\log (A \cdot B) = \log A + \log B \)

- \(A = 2^{\log_2 A} \) and \(B = 2^{\log_2 B} \)

- \(A \cdot B = 2^{\log_2 A + \log_2 B} \)

- So: \(\log_2 AB = \log_2 A + \log_2 B \) !!

Other log properties

- \(\log A/B = \log A - \log B \)
- \(\log (A^B) = B \log A \)
- \(\log X < \log Y < X \) for all \(X > 0 \)

 - \(\log \log Y < \log Y < Y \) for all \(Y > 0 \)

 - called a “sub-linear” function

Note: \(\log \log X \neq \log (\log X) \)

A log is a log is a log

- “Any base \(B \) log is equivalent to base 2 log within a constant factor.”

Algorithm Analysis Examples

- Consider the following program segment:

 \[
 x := 0; \\
 \text{for } i = 1 \text{ to } N \text{ do} \\
 \quad \text{for } j = 1 \text{ to } i \text{ do} \\
 \quad \quad x := x + 1; \\
 \]

 What is the value of \(x \) at the end?

- Total number of times \(x \) is incremented is executed =

 \[
 1 + 2 + 3 + \ldots + N = \sum_{k=1}^{N} k = \frac{N(N+1)}{2} \\
 \]

 An Arithmetic Sequence

 - Congratulations - You’ve just analyzed your first program!

 - Running time of the program is proportional to \(N(N+1)/2 \) for all \(N \)

 - Big-O ?!
Asymptotic Analysis

What we want

• Rough Estimate
• Ignores Details

Big-O Analysis

• Ignores “details”

Analysis of Algorithms

• Efficiency measure
 – how long the program runs time complexity
 – how much memory it uses space complexity
 • For today, we’ll focus on time complexity only

• Why analyze at all?

Asymptotic Analysis

• Complexity as a function of input size \(n \)
 \[T(n) = 4n + 5 \]
 \[T(n) = 0.5 n \log n - 2n + 7 \]
 \[T(n) = 2^n + n^3 + 3n \]

• What happens as \(n \) grows?
Why Asymptotic Analysis?

- Most algorithms are fast for small n
 - Time difference too small to be noticeable
 - External things dominate (OS, disk I/O, …)
- BUT n is often large in practice
 - Databases, internet, graphics, …
- Time difference really shows up as n grows!

Big-O: Common Names

- constant: $O(1)$
- logarithmic: $O(\log n)$
- linear: $O(n)$
- quadratic: $O(n^2)$
- cubic: $O(n^3)$
- polynomial: $O(n^k)$ (k is a constant)
- exponential: $O(c^n)$ (c is a constant > 1)