
CSE 326 DATA STRUCTURES
HOMEWORK 5

Due: Friday, Feb 19, 2010 at the beginning of class. Please put your quiz section in addition to your name
at the top of your homework.

Problem 1. B Trees

For the following questions about B trees, you only need to show the final result, but note that if you do this
it will be hard to award partial credit if the final result is incorrect. [Note that we’ve referred to these as
B-trees, though you’ll often see them called B+ trees.]

(a) Show the result of inserting 12, 10, 15, 4, 1, 17, 3, 13, and 8 into an initially empty B tree with M = 3
and L = 2.

To maintain consistency in answers, please follow the following rules:

(a) You should split nodes whenever there is an overflow due to insertion. Another option, discussed
in the textbook, is to put a child up for adoption to avoid splitting; this is a viable option, but we
ask that you not pursue it and instead split the overflowed node.

(b) When splitting a leaf node due to insertion overflow, you keep the smallest ceil((L+1)/2) elements
in the original node and put the largest floor((L+1)/2) elements in the new node. When splitting
an internal node, you keep the ceil((M+1)/2) children with the smaller values attached to the
original node and attach the floor((M+1)/2) children with the larger values to the new node. So,
after splitting a node into a “left” node and a “right” node, the number of elements (or children)
in the left node will always be greater than or equal to the number of elements (or children) in the
right node.

(b) Now show the result of deleting 12, 13, and 15.

Problem 2. Binary Search Trees

Write a method to generate a perfectly balanced binary search tree of height h with keys 1 through 2h+1 − 1.
Your solution should have a linear runtime. Use pseudo code (or Java) for your answer.

Problem 3. Hash Tables

(a) Weiss, problem 5.1. Assume the table size (array size) is 10.

(b) Weiss, problem 5.2. Choose the new table size to be 19, which is prime and roughly twice as big.
Naturally, when rehashing, you should start with the corresponding input hash table and rehash elements
from top to bottom; i.e., after hashing, you no longer know the insertion order and should simply iterate
through the existing hash table. Also, if any items were not successfully inserted the first time, they
should be inserted in this pass, at the end, in the order of failure. (In a real situation, if you failed to
insert an element, you would probably rehash to a larger table immediately.)


