
Test Copy «Title» Page 1 of 18

Name ________________________________ Section _____________

Do not write your id number or any other confidential information on this page.

There are 12 questions worth a total of 120 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, etc. You may use a calculator if you find it
helpful, but only for simple arithmetic.

Please wait to turn the page until everyone is told to begin.

Test Copy «Title» Page 2 of 18

Score _________________ / 120

1. ______ / 10

2. ______ / 10

3. ______ / 10

4. ______ / 10

5. ______ / 10

6. ______ / 10

7. ______ / 10

8. ______ / 10

9. ______ / 10

10. ______ / 10

11. ______ / 10

12. ______ / 10

Test Copy «Title» Page 3 of 18

1) (10 points)

Starting with an empty binary min-heap:

a) Insert the sequence 5, 9, 7, 11, 17, 12, 8, 15, 13, 6. Draw the final binary min-heap.

b) Perform a deleteMin on your binary min-heap. Draw the resulting binary min-heap.

c) Perform a deleteMin on your binary min-heap. Draw the resulting binary min-heap.

d) Draw an array representation of your binary min-heap from c).

Test Copy «Title» Page 4 of 18

2) (10 points)

Starting with an empty AVL tree:

a) Insert the sequence 15, 12, 20, 8. Draw the final AVL tree.

b) Insert 4. Draw the resulting AVL tree.

c) Insert 13. Draw the resulting AVL tree.

d) Insert 9. Draw the resulting AVL tree.

Test Copy «Title» Page 5 of 18

3) (10 points)

Consider this k-d tree and the corresponding visualization of its elements.

a) The entries a, b, c, d, e, f, g, h, i are already labeled in the tree, but not in the

visualization. They correspond to the solid circles.

 Label each solid circle in the visualization according to the information provided in

the tree. Write directly on the above visualization.

b) Draw what the tree would look like if the dashed circle were added as entry j.

 Work with the given tree, do not build a new tree from scratch.

Test Copy «Title» Page 6 of 18

4) (10 points)

Consider a set of objects with hash codes 40, 5, 18, 29, 35, 7 and a hash table of size 11.

a) Hash the above objects using separate chaining.

0 1 2 3 4 5 6 7 8 9 10

b) Hash the above objects using open addressing and linear probing.

0 1 2 3 4 5 6 7 8 9 10

c) Hash the above objects using open addressing and quadratic probing.

0 1 2 3 4 5 6 7 8 9 10

Test Copy «Title» Page 7 of 18

5) (10 points)

The uptrees used to represent sets for manipulation by union-find algorithms can be
stored in two n-element arrays: one giving the parent of each node (or -1 if the node has
no parent), and the other giving the number of items in a set if the node is the root
(representative node) of a set. For example, we can represent a collection of sets
containing the numbers 1 through 14 as follows:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
up -1 1 2 5 2 -1 4 6 8 6 -1 8 14 11

weight 6 - - - - 5 - - - - 3 - - -

a) Draw a picture of the uptrees represented by the data in the above arrays.

b) Draw the uptrees that result from executing:

 union(find(13), find(8));

Assume that the find operations use path compression and that the union operation
uses union-by-size.

Test Copy «Title» Page 8 of 18

c) Continuing based on your result for b), draw the uptrees that result from executing:

 find(7);

Assume that the find operations use path compression.

d) Show the contents of the two arrays after completing part c).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
up

weight

Test Copy «Title» Page 9 of 18

6) (10 points)

Consider the following directed, weighted graph:

a) Draw an adjacency matrix representation of this graph.

 Provide an O (Big-Oh) bound on the space used by this representation.

Provide an O (Big-Oh) bound on the time to check whether two vertices are adjacent.

A

C D

B

E

1

8

3

2
5

3 6

F G

7
7

1

4

1

Test Copy «Title» Page 10 of 18

b) Draw an adjacency list representation of the graph on the previous page.

 Provide an O (Big-Oh) bound on the space used by this representation.

Provide an O (Big-Oh) bound on the time to check whether two vertices are adjacent.

c) Which of these two representations was emphasized as being much more commonly

used in representing real world problems, and why?

Test Copy «Title» Page 11 of 18

7) (10 points)

Consider the following directed graph:

a) Perform a topological sort of the vertices.

b) Is the sort you found unique? Why?

A

C D

B

E

F G

Test Copy «Title» Page 12 of 18

8) (10 points)

Consider the following directed, weighted graph:

a) Step through Dijkstra’s algorithm to calculate the single-source shortest paths from A

to every other vertex. Show your steps in the table below. Cross out old values and
write in new ones, from left to right within each cell, as the algorithm proceeds. Also
list the vertices in the order which Dijkstra’s algorithm marks them known:

Known vertices (in order marked known):

_____ _____ _____ _____ _____ _____ _____

Vertex Known Distance Path

A

B

C

D

E

F

G

b) What is the lowest-cost path from A to E in the graph, as computed above?

A

C D

B

E

1

8

3

2
5

3 6

F G

7
7

1

4

1

Test Copy «Title» Page 13 of 18

9) (10 points)

Consider yet again the following directed, weighted graph:

You will need to compute a maximum flow from A to E, using the Ford-Fulkerson
method. This page is for your work. Before running the algorithm, read ahead to know
what information you need to provide for the different parts of this problem.

A

C D

B

E

1

8

3

2
5

3 6

F G

7
7

1

4

1

Test Copy «Title» Page 14 of 18

a) List each augmenting path you discover, in the order that you discover them, as well

as the volume you are able to send down that path.

b) Draw the residual graph that you have at the completion of the algorithm, when no

more augmenting paths are available.

c) Give a minimum cut of the vertices in the graph, with source A and sink E.

Test Copy «Title» Page 15 of 18

10) (10 points)

Consider the following undirected, weighted graph:

Apply Kruskal’s algorithm to compute a minimum spanning tree. In the designated
spaces below, write down the edges in the order they are considered by Kruskal’s
algorithm. If the edge is part of the minimum spanning tree found by the algorithm, write
it down in the first list of edges that form the MST. Write down the other edges
considered by the algorithm in the order they were considered. Assume that the algorithm
terminates as soon as the MST has been found.

In the lists, use (x,y) to indicate an edge connecting vertices x and y.

a) Edges that form part of the MST, in order considered:

b) Other edges considered, but not included in the MST, in order considered:

c) Is the MST you found unique? Why?

A

D

4

5

H

6

B

E

3

11

I
4

C

F

10

2

J
7

G

1 11 2 3 8

4 2 3 6 1

Test Copy «Title» Page 16 of 18

11) (10 points)

This problem is intended to be more difficult than most of this exam. You should
probably be done earning the easier points available earlier in this exam before you
begin on this question.

As part of developing a new anagram-based Web game that will make you a Web
celebrity, you need to find all of the anagrams in the English language. Recall that an
anagram is when the letters in one word can be rearranged to make another word. So the
words “enlist”, “inlets”, “listen”, and “silent” are all anagrams of each other.

You have a dictionary containing all words in the English language. So what you need is
an efficient way to find which sets of words from that dictionary are anagrams. You ask
Peter about an efficient way to do this, and he suggests using a hash table, but then must
leave to go do whatever it is that graduate students do. If you wait until later to for Peter
to have time to explain it, you may miss your chance on the Web, so you are on your own
to figure it out.

a) Describe an algorithm that, given a dictionary containing N words, uses a hash table

to find sets of anagrams in O(N) time and O(N) space. Pseudocode is not necessary, a
simple description of the algorithm will suffice. See b) for a hint.

b) Your algorithm requires the use of a hash function with particular properties.

Describe the necessary properties of the hash function.

c) Give an appropriate example of a hash function with the necessary properties.

Test Copy «Title» Page 17 of 18

12) (10 points)

This problem is intended to be the most difficult on this exam. You should probably be
done earning the easier points available earlier in this exam before you begin on this
question.

As you learned in Data Structures, the effective use of graph algorithms is often about
figuring out how to set up your problem as an appropriate graph, so that you can then
apply a standard algorithm. That knowledge has served you well, and your Web game
startup company is doing awesome.

Your new problem is coming up with cute names for all those awesome games. You have
hired a name person who sits around and comes up with cute names, and you have hired
teams of designers that continue to come up with great games.

Because you have high standards for your company, you cannot deploy a game unless it
has an appropriately cute name. And obviously the names are not so cute that people will
find them interesting if there’s no actual game. But while some names make sense for
multiple games, not every name is appropriate for every game.

So, you have games G1 … Gn and you have names N1 … Nm. You also have a list of
names that are acceptable for each game. You must find the pairings of names with
games that maximizes how many named games you can deploy.

For example:

Game A might be named either “Soccer Mania” or “Crazy Monkeys”
(as it is a game about monkeys playing soccer).

Game B might be named either “Hang in There” or “Crazy Monkeys”
(as it is a game about monkeys hang gliding).

Game C might also be named either “Hang in There” or “Crazy Monkeys”
(as it is a game about monkeys hanging from the catwalks in the Paul Allen Center).

In this case, you should clearly name Game A “Soccer Mania”. If you were to name
Game A “Crazy Monkeys,” you would only be able to deploy Game B or Game C, but
not both. That would be bad for profits, and the world really does need more
monkey-related Web games.

Test Copy «Title» Page 18 of 18

a) Draw a graph on which you could apply one of the standard graph algorithms

discussed in class in order to solve this problem for the monkey-related examples.

b) Which algorithm do you apply to this graph in order to name the three games?

c) Describe the general strategy for solving this problem given an arbitrary number of

games, names, and potentially acceptable pairings. Pseudocode is not necessary, a
simple description will suffice

