CSE 326: Data Structures
Sorting

Steve Seitz
Winter 2009

Announcements (2/18/09)

• Reading for this lecture: Chapter 7.

Sorting

• Input
 – an array \(A \) of data records
 – a key value in each data record
 – a comparison function which imposes a consistent ordering on the keys

• Output
 – reorganize the elements of \(A \) such that
 • For any \(i \) and \(j \), if \(i < j \) then \(A[i] \leq A[j] \)

Consistent Ordering

• The comparison function must provide a consistent ordering on the set of possible keys
 – You can compare any two keys and get back an indication of \(a < b, a > b, \) or \(a = b \) (trichotomy)
 – The comparison functions must be consistent
 • If \(\text{compare}(a, b) \) says \(a < b \), then \(\text{compare}(b, a) \) must say \(b > a \)
 • If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{compare}(b, a) \) must say \(b = a \)
 • If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{equals}(a, b) \) and \(\text{equals}(b, a) \) must say \(a = b \)
Why Sort?

- Allows binary search of an N-element array in $O(\log N)$ time
- Allows $O(1)$ time access to kth largest element in the array for any k
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 - Is copying needed?
 - In-place sorting algorithms: no copying or at most $O(1)$ additional temp space.
 - External memory sorting – data so large that does not fit in memory

Stability

A sorting algorithm is **stable** if:
- Items in the input with the same value end up in the same order as when they began.

<table>
<thead>
<tr>
<th>Input</th>
<th>Unstable sort</th>
<th>Stable Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Adams</td>
<td>Adams</td>
</tr>
<tr>
<td>Black</td>
<td>Smith</td>
<td>Smith</td>
</tr>
<tr>
<td>Brown</td>
<td>Washington</td>
<td>Black</td>
</tr>
<tr>
<td>Jackson</td>
<td>Jackson</td>
<td>Jackson</td>
</tr>
<tr>
<td>Jones</td>
<td>Black</td>
<td>Washington</td>
</tr>
<tr>
<td>Smith</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Thompson</td>
<td>Wilson</td>
<td>Wilson</td>
</tr>
<tr>
<td>Washington</td>
<td>Brown</td>
<td>Brown</td>
</tr>
<tr>
<td>White</td>
<td>Jones</td>
<td>Jones</td>
</tr>
<tr>
<td>Wilson</td>
<td>Thompson</td>
<td>Thompson</td>
</tr>
</tbody>
</table>

[Sedgewick]

Time

How fast is the algorithm?
- The definition of a sorted array A says that for any $i < j$, $A[i] \leq A[j]$
- This means that you need to at least check on each element at the very minimum
 - Complexity is at least: $\Omega(n)$
- And you could end up checking each element against every other element $O(n^2)$
- Complexity could be as bad as:

The big question is: How close to $O(n)$ can you get?
Sorting: The Big Picture

Given *n* comparable elements in an array, sort them in an increasing order.

- Simple algorithms: $O(n^2)$
- Improved algorithms: $O(n^{1.5})$
- Fancier algorithms: $O(n \log n)$
- Comparison lower bound: $\Omega(n \log n)$
- Specialized algorithms: $O(n)$
- Handling huge data sets

- Insertion sort
- Shell sort
- Selection sort
- Comb sort (?)
- ... Bubble sort
- Heap sort
- Binary tree sort
- Merge sort
- Quick sort (avg case)
- ... Bucket sort
- Radix sort
- External sorting

Selection Sort: idea

1. Find the smallest element, put it 1st
2. Find the next smallest element, put it 2nd
3. Find the next smallest, put it 3rd
4. And so on ...

Try it out: Selection Sort

- $31, 16, 54, 4, 2, 17, 6$
- $2, 4, 6, 16, 31, 54, 17$

Selection Sort: Code

```cpp
void SelectionSort (Array a[0..n-1]) {
    for (i=0; i<n; ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i], a[j])
    }
}
```

- $O(n)$ swaps

Runtime:
- worst case : $O(n^2)$
- best case : $O(n^2)$
- average case : $O(n^2)$
Bubble Sort Idea

- Take a pass through the array
 - If neighboring elements are out of order, swap them.
- Take passes until no swaps needed.

Try it out: Bubble Sort

- 21, 16, 54, A, 2, 17, 6

 - 31
 - 4
 - 54
 - 54
 - 54
 - 54
 - 2
 - 17
 - 6

Bubble Sort: Code

```c
void BubbleSort (Array a[0..n-1]) {
    swapPerformed = 1
    while (swapPerformed) {
        for (i=0; i<n-1; i++) {
            swapPerformed = 0
            if (a[i+1] < a[i]) {
                Swap(a[i], a[i+1])
                swapPerformed = 1
            }
        }
    }
}
```

Runtime:
- worst case : $O(n^2)$
- best case : $O(n)$
- average case : $O(n^2)$

Insertion Sort: Idea

1. Sort first 2 elements.
2. Insert 3rd element in order.
 - (First 3 elements are now sorted.)
3. Insert 4th element in order
 - (First 4 elements are now sorted.)
4. And so on...
How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78. How to insert 32?
Insertion Sort: Code

```c
void InsertionSort (Array a[0..n-1]) {
    for (i=1; i<n; i++) {
        for (j=i; j>0; j--) {
            if (a[j] < a[j-1])
                Swap(a[j], a[j-1])
            else
                break
        }
    }
}
```

Runtime:

- worst case : \(O(n^2)\)
- best case : \(O(n)\)
- average case : \(O(n^2)\)

Note: can instead move the "hole" to minimize copying, as with a binary heap.

Shell Sort: Idea

A small element at end of list takes a long time to percolate to front.

Idea: take bigger steps at first to percolate faster.

1. Choose offset \(k\):
 a. Insertion sort over array: \(a[0], a[k], a[2k], a[3k], \ldots\)
 b. Insertion sort over array: \(a[1], a[1+k], a[1+2k], a[1+3k], \ldots\)
 c. Insertion sort over array: \(a[2], a[2+k], a[2+2k], a[2+3k], \ldots\)
 d. Do this until all elements touched

2. Choose smaller offset \(m\), where \(m\) is smaller than \(k\), and do another set of insertion sort passes, stepping by \(m\) through the array.

3. Repeat for smaller offsets until last pass uses offset = 1

[Named after the algorithm’s inventor, Donald Shell.]

Try it out: Shell Sort

- Offsets: 3, 2, 1
- Input array: 31, 16, 54, 4, 2, 17, 6

Shell Sort: Code

```c
void ShellSort (Array a[0..n-1]) {
    determine good offsets based on \(n\)
    for (i=0, i<numOffsets; i++) {
        for (j=0, j<offsets[i]; j++) {
            invocationSort(a, j, offsets[i])
    }
}

void InsertionSkipSort (Array a[0..n-1],
                        Int start, Int offset) {
    Do insertion sort on array
    a[start], a[start+offset], a[start+2*offset], ...
}
Shell Sort Offsets

The key to good Shell sort performance: **good offsets**.

Shell started the offset at ceil(n/2) and halved the offset each time. **Not good.**

Sedgewick proposed this offset sequence:
- Lowest offset is 1.
- Others are: 1 + 3 · 2^i + 4^j, for i ≥ 0
- Looks like: 1, 8, 23, 77, 281, 1073, 4193, ...
- (Put in the offset array in reverse order to work with pseudocode on previous slide.)

Result:
- Worst case complexity is O(n^4/3)
- Average case is believed to be O(n^7/6)

Comb Sort

Could you do something like Shell Sort with bubble sort instead of insertion sort?

Yes! Called “Comb Sort” or “Dobosiewicz Sort”.
- First version proposed by Dobosiewicz in 1980.
- Reinvented and refined by Lacey and Box in 1991.

Standard recipe used: offset = n/1.3, on first pass, then offset /= 1.3 on future passes, until offset = 1. If offset is ever computed to be 9 or 10, make it 11.

Complexity not well understood.

Heap Sort: Sort with a Binary Heap

1. Build heap \( O(n) \)
2. Call deleteMin \( n \) times \( O(n \log n) \)

Try it out: Heap Sort

- 31, 16, 54, 4, 2, 17, 6
Binary Tree Sort

1. Build BST (n inserts) $O(n \log n)$
2. In-order traversal $O(n)$

Try it out: Binary Tree Sort

- 31, 16, 54, 4, 2, 17, 6

Runtime: