CSE 326: Data Structures

Asymptotic Analysis

Steve Seitz
Winter 2009

Project 1

- Soundblaster! Reverse a song
 - a.k.a., "backmasking"
- Implement a stack to make the "Reverse" program work
 - Implement as array and as linked list
- **Read the website**
 - Detailed description of assignment
 - Detailed description of how programming projects are graded
- Due by: 11:59pm PDT, Wed. Jan 14
 - Electronic submission

Other announcements

- Homework requires you get the textbook (it’s a good book).

- Go to Thursdays sections

- Homework #1 out on Friday
 - Due at the **beginning of class next Friday** (Jan 16).

Algorithm Analysis

- Correctness:
 - Does the algorithm do what is intended.

- Performance:
 - Speed
 - Memory
 - **time complexity**
 - **space complexity**

- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
 - Especially useful in recursive algorithms

$F_{5}(3) \neq 2$

Proof by Induction

- **Base Case:** The algorithm is correct for a base case or two by inspection.

- **Inductive Hypothesis (n=k):** Assume that the algorithm works correctly for the first k cases.

- **Inductive Step (n=k+1):** Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for sum

- Write a recursive function to find the sum of the first n integers stored in array v.

```java
sum(int array v, int n) returns int
if n = 0 then
  sum = 0
else
  sum = nth number + sum of first n-1 numbers
return sum
```

Program Correctness by Induction

- **Base Case:**
 \[
 \sum_{i=0}^{0} = 0
 \]

- **Inductive Hypothesis (n=k):**
 \[
 \sum_{i=0}^{k} i = \frac{k(k+1)}{2}
 \]

- **Inductive Step (n=k+1):**
 \[
 \sum_{i=0}^{k+1} i = (k+1) + \sum_{i=0}^{k} i = \frac{(k+1)(k+2)}{2}
 \]
How to measure performance?

run many examples, plot performance
find bottlenecks

exhaustive test

empirical

count operations in code

loops, predict, iterate

analyse code patterns

Analyzing Performance

We will focus on analyzing time complexity. First, we have some “rules” to help measure how long it takes to do things:

- **Basic operations**: Constant time
- **Consecutive statements**: Sum of times
- **Conditionals**: Test, plus larger branch cost
- **Loops**: Sum of iterations
- **Function calls**: Cost of function body
- **Recursive functions**: Solve recurrence relation...

Second, we will be interested in best and worst case performance.

Complexity cases

We’ll start by focusing on two cases.

Problem size \(N \)

- **Worst-case complexity**: \(\max \) # steps
 - algorithm takes on “most challenging” input of size \(N \)
- **Best-case complexity**: \(\min \) # steps
 - algorithm takes on “easiest” input of size \(N \)

Exercise - Searching

```c
bool ArrayContains(int array[], int n, int key){
    // Insert your algorithm here
    // linear search
    // binary search
    // random search?
}
```
Linear Search Analysis

```c
bool LinearArrayContains(int array[], int n, int key) {
    for (int i = 0; i < n; i++) {
        if (array[i] == key) {
            // Found it!
            return true;
        }
    }
    return false;
}
```

Best Case:
\[T(n) = 4 \]
Worst Case:
\[T(n) = 3n + 3 \]

Binary Search Analysis

```c
bool BinaryArrayContains(int array[], int low, int high, int key) {
    // The subarray is empty
    if (low > high) return false;
    // Search this subarray recursively
    int mid = (high + low) / 2;
    if (key == array[mid]) {
        return true;
    } else if (key < array[mid]) {
        return BinaryArrayContains(array, low, mid - 1, key);
    } else {
        return BinaryArrayContains(array, mid + 1, high, key);
    }
}
```

Best case:
\[T(n) = 2 \quad \text{if } n = 0 \]
\[T(n) = 5 \quad \text{otherwise} \]
Worst case:
\[T(n) = 7 + \text{recursive} \]

Solving Recurrence Relations

1. Determine the recurrence relation and base case(s).
\[T(n) = T(n/2) \quad T(1) = 9 \]

2. "Expand" the original relation to find an equivalent expression in terms of the number of expansions \(k \).
\[T(n) = T(n/2) + T(n/4) \]
\[= 2 \cdot T(n/2) \quad T(1) = 9 \]
\[= 7 + 7 + (7 + T(n/8)) \]
\[= 7 + 7 + (7 + T(n/16)) \]
\[= 7k + T(n/2^k) \]

3. Find a closed-form expression by setting \(k \) to a value which reduces the problem to a base case
\[n/2^k = 1 \quad \Rightarrow \quad n = 2^k \quad \Rightarrow \quad \log_2 n = k \]
\[T(n) = 7 \log_2 n + T(1) = 7 \log_2 n + 9 \]

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>4</td>
<td>5 at [middle]</td>
</tr>
<tr>
<td>Worst Case</td>
<td>3n+3</td>
<td>7[log n]+9</td>
</tr>
</tbody>
</table>

BS wins for \(n > 7 \)
Linear search—empirical analysis

Each search produces a dot in above graph. Blue = less frequently occurring, Red = more frequent

Binary search—empirical analysis

Each search produces a dot in above graph. Blue = less frequently occurring, Red = more frequent

Empirical comparison

Gives additional information

Fast Computer vs. Slow Computer
Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the effects of different machines or different implementations of same algorithm
- Comparing worst case search examples:
 \[T_{\text{worst}}^{\text{LS}}(n) = 3n + 3 \quad \text{vs.} \quad T_{\text{worst}}^{\text{BS}}(n) = 7\log_2 n + 9 \]

\[
\lim_{n \to \infty} \frac{3n + 3}{7\log_2 n + 9} = \lim_{n \to \infty} \frac{\frac{3}{7n\log_2 n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{3n}{7} = \infty
\]

Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms

- Linear search is \(T_{\text{worst}}^{\text{LS}}(n) = 3n + 3 \in O(n) \)
- Binary search is \(T_{\text{worst}}^{\text{BS}}(n) = 7\log_2 n + 9 \in O(\log n) \)

Remember: the "fastest" algorithm has the slowest growing function for its runtime
Asymptotic Analysis

Eliminate low order terms
- $4n + 5 \Rightarrow 4n$
- $0.5n \log n + 2n + 7 \Rightarrow$
- $n^2 + 3 \, 2^n + 3n \Rightarrow$

Eliminate coefficients
- $4n \Rightarrow n$
- $0.5n \log n \Rightarrow$
- $3 \, 2^n \Rightarrow$

Properties of Logs

Basic:
- $A^{\log_A B} = B$
- $\log_A A = 1$

Independent of base:
- $\log(AB) = \log A + \log B$
- $\log(A/B) = \log A - \log B$
- $\log(A^B) = B \log A$
- $\log((A^B)^c) = c B \log A$

Properties of Logs

$$\log_A n = \left(\frac{1}{\log_B A} \right) \log_B n$$

$$\log_A n = k \log_B n$$

Another example

- Eliminate low-order terms
- $16n^3 \log_8 (10n^2) + 100n^2$
- $16n^3 \left[\log_8 (10) + \log_8 (n^2) \right]$
- $16n^3 \log_8 10 + 16n^3 \log_8 n^2$
- $2n^3 \log n^2$
- $n^3 \log n$
Comparing functions

- $f(n)$ is an **upper bound** for $h(n)$ if $h(n) \leq f(n)$ for all n

$$h(n) = n^2 + 1, \quad f(n) = n$$

This is too strict – we mostly care about **large** n

- $f(n)$ is an **upper bound** for $h(n)$ if $h(n) \leq f(n)$ for all n

$\delta(n) = n, \quad f(n) = n$

Still too strict if we want to ignore **scale factors**

Definition of Order Notation

- **Upper bound**: $h(n) \in O(f(n))$
 Big-O “order”
 - Exist positive constants c and n_0 such that $h(n) \leq c f(n)$ for all $n \geq n_0$

- **Lower bound**: $h(n) \in \Omega(g(n))$
 Omega
 - Exist positive constants c and n_0 such that $h(n) \geq c g(n)$ for all $n \geq n_0$

- **Tight bound**: $h(n) \in \Theta(f(n))$
 Theta
 - When both hold: $h(n) \in O(f(n))$
 - $h(n) \in \Omega(f(n))$

$O(f(n))$ defines a class (set) of functions

Order Notation: Intuition

- $a(n) = n^3 + 2n^2$
- $b(n) = 100n^2 + 1000$

Although not yet apparent, as n gets “sufficiently large”, $a(n)$ will be “greater than or equal to” $b(n)$

Example

$h(n) \in O(f(n))$ iff there exist positive constants c and n_0 such that:

$$h(n) \leq c f(n) \text{ for all } n \geq n_0$$

Example:

$$100n^2 + 1000 \leq 1/2 \left(n^3 + 2n^2 \right) \text{ for all } n \geq 198$$

So $b(n) \in O(a(n))$
Order Notation: Example

\[100n^2 + 1000 \leq \frac{1}{2}(n^3 + 2n^2) \text{ for all } n \geq 198 \]

So \(b(n) \in O(a(n)) \)

\[n^2 \leq a(n) \]

\[c = 1 \]

Order Notation: Worst Case Binary Search

- \(\log n \)
- \(T_{\text{worst}}(n) = \log n + 9 \)
- \(\in \Omega(\log) \)
- \(n \in O(\log) \)
- \(\in \Omega(\log) \)
- \(\Rightarrow \in \Theta(\log) \)

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

\[h(n) = O(f(n)) \]

or

\[h(n) \text{ is } O(f(n)) \]

These are equivalent to

\[h(n) \in O(f(n)) \]

Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) (log, n, log \(n^2 \) \(\in O(\log n) \))
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) (\(k \) is a constant)
- exponential: \(O(c^n) \) (\(c \) is a constant > 1)
Meet the Family

- \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)
 - \(o(f(n)) \) is the set of all functions asymptotically strictly less than \(f(n) \)

- \(\Omega(g(n)) \) is the set of all functions asymptotically greater than or equal to \(g(n) \)
 - \(\omega(g(n)) \) is the set of all functions asymptotically strictly greater than \(g(n) \)

- \(\Theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

Meet the Family, Formally

- \(h(n) \in O(f(n)) \) iff
 There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \leq c f(n) \) for all \(n \geq n_0 \)

- \(h(n) \in \omega(f(n)) \) iff
 There exists an \(n_0 > 0 \) such that \(h(n) < c f(n) \) for all \(c > 0 \) and \(n \geq n_0 \)
 - This is equivalent to: \(\lim_{n \to \infty} \frac{h(n)}{f(n)} = 0 \)

- \(h(n) \in \Omega(g(n)) \) iff
 There exist \(c > 0 \) and \(n_0 > 0 \) such that \(h(n) \geq c g(n) \) for all \(n \geq n_0 \)
 - This is equivalent to: \(\lim_{n \to \infty} \frac{h(n)}{g(n)} = \infty \)

- \(h(n) \in \omega(g(n)) \) iff
 There exists an \(n_0 > 0 \) such that \(h(n) > c g(n) \) for all \(c > 0 \) and \(n \geq n_0 \)
 - This is equivalent to: \(\lim_{n \to \infty} \frac{h(n)}{g(n)} = \infty \)

- \(h(n) \in \Theta(f(n)) \) iff
 \(h(n) \in O(f(n)) \) and \(h(n) \in \Omega(f(n)) \)
 - This is equivalent to: \(\lim_{n \to \infty} \frac{h(n)}{f(n)} = c = 0 \)

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(\leq)</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\geq)</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>(=)</td>
</tr>
<tr>
<td>(o)</td>
<td>(<)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

Complexity cases (revisited)

Problem size \(N \)

- **Worst-case complexity**: \(\max \) # steps algorithm takes on “most challenging” input of size \(N \)
- **Best-case complexity**: \(\min \) # steps algorithm takes on “easiest” input of size \(N \)
- **Average-case complexity**: \(\avg \) # steps algorithm takes on random inputs of size \(N \)
- **Amortized complexity**: \(\max \) total # steps algorithm takes on \(M \) “most challenging” consecutive inputs of size \(N \), divided by \(M \) (i.e., divide the max total by \(M \)).
Bounds vs. Cases

Two orthogonal axes:

- **Bound Flavor**
 - Upper bound (O, o)
 - Lower bound (Ω, ω)
 - Asymptotically tight (Θ)

- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.

Pros and Cons of Asymptotic Analysis

Pros: "easy"
+ don't need to think about testing, debug
+ make design choices before writing code
+ general

Cons: doesn't address
- general (e.g., worst case)
- harder to understand
- less precise