CSE 326: Data Structures
Spanning Trees

Steve Seitz
Winter 2009

A Hidden Tree

Spanning Tree in a Graph

Vertex = router
Edge = link between routers
Spanning tree
- Connects all the vertices
- No cycles

Undirected Graph

• $G = (V,E)$
 – V is a set of vertices (or nodes)
 – E is a set of unordered pairs of vertices

$V = \{1,2,3,4,5,6,7\}$
$E = \{(1,2),(1,6),(1,5),(2,7),(2,3),(3,4),(4,7),(4,5),(5,6)\}$

2 and 3 are adjacent
2 is incident to edge (2,3)
Spanning Tree Problem

- Input: An undirected graph \(G = (V,E) \). \(G \) is connected.
- Output: \(T \subseteq E \) such that
 - \((V,T) \) is a connected graph
 - \((V,T) \) has no cycles

Spanning Tree Algorithm

```
ST(Vertex i) {
    mark i;
    for each j adjacent to i {
        if (j is unmarked) {
            Add (i,j) to T;
            ST(j);
        }
    }
}
```

Main() {
 T = empty set;
 ST(1);
}

Example of Depth First Search

![Example of Depth First Search](image)

Example Step 2

![Example Step 2](image)
Example Step 3

\[(1,2) (2,7)\]

Example Step 4

\[(1,2) (2,7) (7,5)\]

Example Step 5

\[(1,2) (2,7) (7,5) (5,4)\]

Example Step 6

\[(1,2) (2,7) (7,5) (5,4) (4,3)\]
How many edges in a spanning tree?

Before moving on, it will help us to know how many edges a spanning tree must have.

First, a couple of properties of trees…

A tree has one vertex of degree one

Property: a tree with $|V|>1$ has at least one vertex of degree one (i.e., with only one edge incident to it).

Proof:
Removing a vertex of degree one gives a tree

Property: removing a vertex of degree one from a tree (and the adjacent edge) results in a tree.

Proof:
- Removing an edge cannot introduce cycles.
- Removing a vertex of degree one will not result in a disconnected graph.
So, the graph is acyclic and connected, i.e., a tree.

A spanning tree has \(|V|-1\) edges

Property: a spanning tree over a graph with \(|V|\) vertices has \(|V|-1\) edges.

Proof by induction:
- **Base case**: 1 vertex → \(|V|-1 = 0\) edges.
- **Inductive hypothesis**: a spanning tree with \(k-1\) vertices has \(k-2\) edges.

Prove: spanning tree with \(k\) vertices has \(k-1\) edges
- Spanning tree with \(k\) vertices has at least one vertex of degree 1.
- Remove that vertex and its edge from the graph and spanning tree.
- The result is a spanning tree of \(k-1\) vertices, which must have \(k-2\) edges (inductive hypothesis).
- Restoring that vertex and edge gives a tree with \(k\) vertices and \(k-1\) edges.

Best Spanning Tree

Finding a reliable routing subnetwork:
- Each edge has the probability that it won’t fail
- Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success = \(.85 \times .95 \times .89 \times .95 \times 1.0 \times .84\) = \(.5735\)
Minimum Spanning Trees

Given an undirected graph $G=(V,E)$, find a graph $G'=(V, E')$ such that:
- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected
- $\sum_{(u,v) \in E'} c_{uv}$ is minimal

Applications: wiring a house, power grids, Internet connections

Minimum Spanning Tree Problem

- Input: Undirected Graph $G = (V,E)$ and $C(e)$ is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$

Two Different Approaches

Prim's Algorithm
Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

Prim’s algorithm

G

known
Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “root”
 - mark it as known
 - Update cost of all its neighbors
2. While there are unknown nodes left in the graph
 a. Select an unknown node \(b \) with the smallest cost from some known node \(a \)
 b. Mark \(b \) as known
 c. Add \((a, b) \) to MST
 d. Update cost of all nodes adjacent to \(b \)

This is basically Dijkstra’s algorithm, except we are keeping track of minimum distance to the known vertices, not to any source vertex.

Prim’s Algorithm Analysis

Running time:
Same as Dijkstra’s: \(O(|E| \log |V| + |V| \log |V|) \)
Can we simplify this?

Correctness:
Proof is similar to Dijkstra’s

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

\[G = (V, E) \]
Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 • empty MST
 • all vertices marked unconnected
 • all edges unmarked
2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u,v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u,v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Doesn’t it sound familiar?
Example of Kruskal 7

Data Structures for Kruskal

- Sorted edge list
 \[(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)\]
 0 1 1 2 2 3 3 3 4

- Disjoint Union / Find
 - Union(a,b) - union the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a
Example of DU/F 1

Example of DU/F 2

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,j) chosen in increasing order do
 u := Find(i);
 v := Find(j);
 if not(u = v) then
 add (i,j) to A;
 Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?

Kruskal code

void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);
 while (edgesAccepted < NUM_VERTICES - 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

Total Cost:
Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is not minimum:

Pick another spanning tree T_{\min} with lower cost than T_K

Pick the smallest edge $e_1=(u,v)$ in T_K that is not in T_{\min}

T_{\min} already has a path p in T_{\min} from u to v

\Rightarrow Adding e_1 to T_{\min} will create a cycle in T_{\min}

Pick an edge e_2 in p that Kruskal’s algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered)

\Rightarrow cost(e_2) ≥ cost(e_1)

\Rightarrow can replace e_2 with e_1 in T_{\min} without increasing cost!

Keep doing this until T_{\min} is identical to T_K

\Rightarrow T_K must also be minimal – contradiction!