The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p = v_0 \ v_1 \ v_2 \ldots \ v_k$

- unweighted length of path $p = k$ (a.k.a. length)
- weighted length of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a. cost)

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from s to t?
Variations of SSSP

– Weighted vs. unweighted
– Directed vs undirected
– Cyclic vs. acyclic
– Positive weights only vs. negative weights allowed
– Shortest path vs. longest path
– …

Applications

– Network routing
– Driving directions
– Cheap flight tickets
– Critical paths in project management (see textbook)
– …

SSSP: Unweighted Version

void Graph::unweighted (Vertex s){
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()){
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY){
 w.dist = v.dist + 1;
 w.prev = v;
 q.enqueue(w);
 }
 }
}

void Graph::unweighted (Vertex s){
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()){
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY){
 w.dist = v.dist + 1;
 w.prev = v;
 q.enqueue(w);
 }
 }
}

total running time: O()
Weighted SSSP:
All edges are not created equal

Can we calculate shortest distance to all vertices from Allen Center?

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- **Known**
 - shortest distance is already known
- **Unknown**
 - Have tentative distance

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
 Select an unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = cost(a) + cost(a, b)
 if (newcost < cost(b))
 cost(b) = newcost
 previous(b) = a

Important Features

- Once a vertex is known, the cost of the shortest path to that vertex is known
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex

Dijkstra’s Alg: Implementation

Initialize the cost of each vertex to ∞
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
 Select the unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = min(cost(b), cost(a) + cost(a, b))
 if newcost < cost(b)
 cost(b) = newcost
 previous(b) = a

What data structures should we use?

Running time?
Dijkstra’s Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Why does it work?

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
- If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
- So the path through W to V cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
- Initial cloud is just the source with shortest path 0
- Assume: Everything inside the cloud has the correct shortest path
- Inductive step: by argument on previous slide, we can safely add min-cost vertex to cloud

When does Dijkstra’s algorithm not work?

Negative Weights?

- If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
- So the path through W to V cannot be any shorter!
Dijkstra for BFS

• You can use Dijkstra's algorithm for BFS

• Is this a good idea?