Data structure for disjoint sets?

- Represent: \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Support: find(x), union(x,y)

Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worst-case $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
 - Target complexity: $O(m)$ i.e. $O(1)$ amortized
Tree-based Approach

Each set is a tree

Each set is a tree
• Root of each tree is the set name.
• Allow large fanout (why?)

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Find Operation

Find(x) follow x to the root and return the root.

Union Operation

Union(i, j) - assuming i and j roots, point i to j.
Simple Implementation

- Array of indices

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

$\text{up}[x] = -1$ means x is a root.

```
1   2    3    4   5    6   7
```

Implementation

```c
int Find(int x) {
    while(up[x] >= 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    assert(up[x]<0 && up[y]<0);
    up[x] = y;
}
```

Runtime for Union:

Runtime for Find:

Amortized complexity is no better.

A Bad Case

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\cdots</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union(1,2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>\cdots</td>
<td>n</td>
</tr>
<tr>
<td>Union(2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>\cdots</td>
<td>n</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union(n-1,n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find(1) n steps!!

Two Big Improvements

Can we do better? Yes!

1. **Union-by-size**
 - Improve `Union` so that `Find` only takes worst case time of $\Theta(\log n)$.

2. **Path compression**
 - Improve `Find` so that, with Union-by-size, `Find` takes amortized time of almost $\Theta(1)$.
Union-by-Size

Union-by-size
- Always point the smaller tree to the root of the larger tree

S-Union(1,7)

Example Again

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^h.

- Proof by induction
 - Base case: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for $h-1$
 - Inductive step: Then true for h.
 - Observation: tree gets taller only as a result of a union.

Analysis of Union-by-Size

- What is worst case complexity of Find(x) in an up-tree forest of n nodes?

- (Amortized complexity is no better.)
Worst Case for Union-by-Size

- n/2 Unions-by-size
- n/4 Unions-by-size

Example of Worst Cast (cont’)

After \(n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Unions-by-size

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Array Implementation

Can store separate size array:

<table>
<thead>
<tr>
<th>up</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Elegant Array Implementation

Better, store sizes in the up array:

<table>
<thead>
<tr>
<th>up</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>-4</td>
<td>-1</td>
</tr>
</tbody>
</table>

Negative up-values correspond to sizes of roots.
Code for Union-by-Size

S-Union(i,j){
 // Collect sizes
 si = -up[i];
 sj = -up[j];

 // verify i and j are roots
 assert(si >= 0 && sj >= 0)
 // point smaller sized tree to
 // root of larger, update size
 if (si < sj) {
 up[i] = j;
 up[j] = -(si + sj);
 } else {
 up[j] = i;
 up[i] = -(si + sj);
 }
}

Path Compression

- To improve the amortized complexity, we'll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."

Self-Adjustment Works

Draw the result of Find(5):
Code for Path Compression Find

```c
PC-Find(i) {
    //find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
        root = j;
    }
    //compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - …a single Union-by-size is:
 - …a single PC-Find is:

- Time complexity for \(m \geq n \) operations on \(n \) elements has been shown to be \(O(m \log^* n) \).
 [See Weiss for proof.]
 - Amortized complexity is then \(O(\log^* n) \)
 - What is \(\log^* \)?

\(\log^* n \)

\(\log^* n = \) number of times you need to apply \(\log \) to bring value down to at most 1

\[
\begin{align*}
\log^* 2 &= 1 \\
\log^* 4 &= \log^* 2^2 = 2 \\
\log^* 16 &= \log^* 2^{2^2} = 3 \quad (\log \log 16 = 1) \\
\log^* 65536 &= \log^* 2^{2^{2^2}} = 4 \quad (\log \log \log 65536 = 1) \\
\log^* 2^{65536} &= \ldots \ldots \ldots \approx \log^* (2 \times 10^{19,728}) = 5
\end{align*}
\]

\(\log^* n \leq 5 \) for all reasonable \(n \).

The Tight Bound

In fact, Tarjan showed the time complexity for \(m \geq n \) operations on \(n \) elements is:

\[\Theta(m \alpha(m, n)) \]

Amortized complexity is then \(\Theta(\alpha(m, n)) \).

What is \(\alpha(m, n) \)?

- Inverse of Ackermann’s function.
- For reasonable values of \(m, n \), grows even slower than \(\log^* n \). So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!