Announcements (2/18/09)

- Reading for this lecture: Chapter 7.

Sorting

- Input
 - an array \(A \) of data records
 - a key value in each data record
 - a comparison function which imposes a consistent ordering on the keys

- Output
 - reorganize the elements of \(A \) such that
 - For any \(i \) and \(j \), if \(i < j \) then \(A[i] \leq A[j] \)

Consistent Ordering

- The comparison function must provide a consistent ordering on the set of possible keys
 - You can compare any two keys and get back an indication of \(a < b \), \(a > b \), or \(a = b \) (trichotomy)
 - The comparison functions must be consistent
 - If \(\text{compare}(a, b) \) says \(a < b \), then \(\text{compare}(b, a) \) must say \(b > a \)
 - If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{compare}(b, a) \) must say \(b = a \)
 - If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{equals}(a, b) \) and \(\text{equals}(b, a) \) must say \(a = b \)
Why Sort?

- Allows binary search of an N-element array in $O(\log N)$ time
- Allows $O(1)$ time access to kth largest element in the array for any k
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 - Is copying needed?
 - **In-place** sorting algorithms: no copying or at most $O(1)$ additional temp space.
 - External memory sorting – data so large that does not fit in memory

Stability

A sorting algorithm is **stable** if:
- Items in the input with the same value end up in the same order as when they began.

<table>
<thead>
<tr>
<th>Input</th>
<th>Unstable sort</th>
<th>Stable Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Adams</td>
<td>Adams</td>
</tr>
<tr>
<td>Black</td>
<td>Smith</td>
<td>Smith</td>
</tr>
<tr>
<td>Brown</td>
<td>Washington</td>
<td>Black</td>
</tr>
<tr>
<td>Jackson</td>
<td>Jackson</td>
<td>Jackson</td>
</tr>
<tr>
<td>Jones</td>
<td>Black</td>
<td>Washington</td>
</tr>
<tr>
<td>Smith</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Thompson</td>
<td>Wilson</td>
<td>Wilson</td>
</tr>
<tr>
<td>Washington</td>
<td>Thompson</td>
<td>Brown</td>
</tr>
<tr>
<td>White</td>
<td>Brown</td>
<td>Jones</td>
</tr>
<tr>
<td>Wilson</td>
<td>Jones</td>
<td>Thompson</td>
</tr>
</tbody>
</table>

[Sort as per Sedgewick]

Time

How fast is the algorithm?
- The definition of a sorted array A says that for any $i < j$, $A[i] \leq A[j]$
- This means that you need to at least check on each element at the very minimum
 - Complexity is at least:
 - And you could end up checking each element against every other element
 - Complexity could be as bad as:

The big question is: How close to $O(n)$ can you get?
Sorting: The Big Picture

Given \(n \) comparable elements in an array, sort them in an increasing order.

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Bubble sort

Improved algorithms: \(O(n \log n) \)
- Shell sort

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Binary tree sort
- Merge sort
- Quick sort (avg case)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets

Selection Sort: idea

1. Find the smallest element, put it 1\(^{st}\)
2. Find the next smallest element, put it 2\(^{nd}\)
3. Find the next smallest, put it 3\(^{rd}\)
4. And so on …

Try it out: Selection Sort

- 31, 16, 54, 4, 2, 17, 6

Selection Sort: Code

```c
void SelectionSort (Array a[0..n-1]) {
    for (i=0; i<n; ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i],a[j])
    }
}
```

Runtime:
- worst case :
- best case :
- average case :
Bubble Sort Idea

• Take a pass through the array
 – If neighboring elements are out of order, swap them.
• Take passes until no swaps needed.

Try it out: Bubble Sort

• 31, 16, 54, 4, 2, 17, 6

Bubble Sort: Code

```c
void BubbleSort (Array a[0..n-1]) {
    swapPerformed = 1
    while (swapPerformed) {
        swapPerformed = 0
        for (i=0; i<n-1; i++) {
            if (a[i+1] < a[i]) {
                Swap(a[i],a[i+1])
                swapPerformed = 1
            }
        }
    }
}
```

Runtime:
worst case :
best case :
average case :

Insertion Sort: Idea

1. Sort first 2 elements.
2. Insert 3rd element in order.
 • (First 3 elements are now sorted.)
3. Insert 4th element in order
 • (First 4 elements are now sorted.)
4. And so on…
How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78. How to insert 32?

Example

Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6
Insertion Sort: Code

```c
void InsertionSort (Array a[0..n-1]) {
    for (i=1; i<n; i++) {
        for (j=i; j>0; j--) {
            if (a[j] < a[j-1])
                Swap(a[j],a[j-1])
            else
                break
        }
    }
}
```

Runtime:

<table>
<thead>
<tr>
<th>Case</th>
<th>Worst Case</th>
<th>Best Case</th>
<th>Average Case</th>
</tr>
</thead>
</table>

Note: can instead move the “hole” to minimize copying, as with a binary heap.

Shell Sort: Idea

A small element at end of list takes a long time to percolate to front.

Idea: take bigger steps at first to percolate faster.

1. Choose offset k:
 a. Insertion sort over array: $a[0]$, $a[k]$, $a[2k]$, ...
 b. Insertion sort over array: $a[1]$, $a[1+k]$, $a[1+2k]$, ...
 c. Insertion sort over array: $a[2]$, $a[2+k]$, $a[2+2k]$, ...
 d. Do this until all elements touched

2. Choose smaller offset m, where m is smaller than k, and do another set of insertion sort passes, stepping by m through the array.

3. Repeat for smaller offsets until last pass uses offset = 1

[Named after the algorithm’s inventor, Donald Shell.]

Try it out: Shell Sort

- Offsets: 3, 2, 1
- Input array: 31, 16, 54, 4, 2, 17, 6

Shell Sort: Code

```c
void ShellSort (Array a[0..n-1]) {
    determine good offsets based on n
    for (i=0, i<numOffsets; i++) {
        for (j=0, j<offsets[i]; j++) {
            insertionSort(a, j, offsets[i])
        }
    }
}

void InsertionSkipSort (Array a[0..n-1],
                          Int start, Int offset) {
    Do insertion sort on array
    a[start], a[start+offset], a[start+2*offset],...
}
```
Shell Sort Offsets

The key to good Shell sort performance: good offsets.

Shell started the offset at ceil(n/2) and halved the offset each time. Not good.

Sedgewick proposed this offset sequence:
- Lowest offset is 1.
- Others are: 1 + 3 \cdot 2^i + 4^{i+1} \text{ for } i \geq 0
- Looks like: 1, 8, 23, 77, 281, 1073, 4193, ...
- (Put in the offset array in reverse order to work with pseudocode on previous slide.)

Result:
- Worst case complexity is O(n^{4/3})
- Average case is believed to be O(n^{7/6})

Comb Sort

Could you do something like Shell Sort with bubble sort instead of insertion sort?

Yes! Called “Comb Sort” or “Dobosiewicz Sort”.
- First version proposed by Dobosiewicz in 1980.
- Reinvented and refined by Lacey and Box in 1991.

Standard recipe used: offset = n/1.3, on first pass, then offset /= 1.3 on future passes, until offset = 1. If offset is ever computed to be 9 or 10, make it 11.

Complexity not well understood.

Heap Sort: Sort with a Binary Heap

Try it out: Heap Sort

- 31, 16, 54, 4, 2, 17, 6
Binary Tree Sort

Try it out: Binary Tree Sort

- 31, 16, 54, 4, 2, 17, 6