
CSE 326: Data Structures
B-Trees and B+ Trees

Steve Seitz
Winter 2009

2

Announcements (2/4/09)

• Midterm on Friday

• Special office hour: 4:00-5:00 Thursday in Jaech
Gallery (6th floor of CSE building)
– This is in addition to my usual 11am office hour.

3

Traversing very large datasets
Suppose we had very many pieces of data (as in a

database), e.g., n = 230 ≈ 109.
How many (worst case) hops through the tree to find a

node?

• BST

• AVL

• Splay
4

Memory considerations
What is in a tree node? In an object?

Node:
Object obj;
Node left;
Node right;
Node parent;

Object:
Key key;
…data…

Suppose the data is 1KB.
How much space does the tree take?
How much of the data can live in 1GB of RAM?

5

CPU

L1 Cache

Main memory

Disk

Cycles to access:

Registers

L2 Cache

1

Random: 30,000,000

Streamed: 5000

2

30

250

6

Minimizing random disk access
In our example, almost all of our data structure is on
disk.

Thus, hopping through a tree amounts to random
accesses to disk. Ouch!

How can we address this problem?

7

M-ary Search Tree

Complete tree has height:

hops for find:

Runtime of find:

Suppose we devised a search tree with branching factor M:

8

• Each internal node still has (up to) M-1 keys:
• Order property:

– subtree between two keys x and y
contain leaves with values v
such that x ≤ v < y

– Note the “≤”
• Leaf nodes have up to L

sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

9

B+ Tree Structure Properties
Root (special case)

– has between 2 and M children (or root could be a leaf)

Internal nodes
– store up to M-1 keys
– have between ⎡M/2⎤ and M children

Leaf nodes
– where data is stored
– all at the same depth
– contain between ⎡L/2⎤ and L data items

10

B+ Tree: Example
B+ Tree with M = 4 (# pointers in internal node)
and L = 5 (# data items in leaf)

1, AB..

4, XY..

6
8
9

10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

All leaves
at the same
depth

Data objects…
which I’ll ignore
in slides

2, GH..

19

24

Definition for later: “neighbor” is the next sibling to the left or right.

11

Disk Friendliness

What makes B+ trees disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
• Much of tree structure can be loaded into memory

irrespective of data object size
• Data actually resides in disk

1212

B+ trees vs. AVL trees

Suppose again we have n = 230 ≈ 109 items:

• Depth of AVL Tree

• Depth of B+ Tree with M = 256, L = 256

Great, but how to we actually make a B+ tree and keep it
balanced…?

13

Building a B+ Tree with Insertions

The empty
B-Tree

M = 3 L = 3

Insert(3) Insert(18) Insert(14)

14

Insert(30)
3

14

18

3

14

18

M = 3 L = 3

15

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3 16

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

17

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3 18

Insertion Algorithm

1. Insert the key in its leaf in
sorted order

2. If the leaf ends up with L+1
items, overflow!
– Split the leaf into two nodes:

• original with ⎡(L+1)/2⎤
smaller keys

• new one with ⎣(L+1)/2⎦
larger keys

– Add the new child to the parent
– If the parent ends up with M+1

children, overflow!

3. If an internal node ends up
with M+1 children, overflow!
– Split the node into two nodes:

• original with ⎡(M+1)/2⎤
children with smaller keys

• new one with ⎣(M+1)/2⎦
children with larger keys

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in
two and hang the new nodes
under a new root

5. Propagate keys up tree.
This makes the tree deeper!

19

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3 20

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12 16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

21

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45
18

30

36 40

36

38

18

40

45

M = 3 L = 3 22

Delete(16)

3

12

14

18

30

36 40

36

38

18

40

45
3

12

14

M = 3 L = 3

23

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3 24

Delete(18)

3

12

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

25

3

12

30

40

36

38

36

40

45

M = 3 L = 3 26

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than ⎡L/2⎤ items, underflow!
– Adopt data from a neighbor;

update the parent
– If adopting won’t work, delete

node and merge with neighbor
– If the parent ends up with

fewer than ⎡M/2⎤ children,
underflow!

27

Deletion Slide Two
3. If an internal node ends up with fewer

than ⎡M/2⎤ children, underflow!
– Adopt from a neighbor;

update the parent
– If adoption won’t work,

merge with neighbor
– If the parent ends up with fewer than ⎡M/2⎤

children, underflow!

4. If the root ends up with only one child,
make the child the new root of the tree

5. Propagate keys up through tree.

This reduces the
height of the tree!

28

Thinking about B+ Trees

• B+ Tree insertion can cause (expensive) splitting
and propagation up the tree

• B+ Tree deletion can cause (cheap) adoption or
(expensive) merging and propagation up the tree

• Split/merge/propagation is rare if M and L are large
(Why?)

• Pick branching factor M and data items/leaf L such
that each node takes one full page/block of
memory/disk.

29

Complexity

• Find:
• Insert:

– find:
– Insert in leaf:
– split/propagate up:

• Claim: O(M) costs are negligible

30

Tree Names You Might Encounter

– “B-Trees”
• More general form of B+ trees, allows data at internal nodes too
• Range of children is (key1,key2) rather than [key1, key2)

– B-Trees with M = 3, L = x are called 2-3 trees
• Internal nodes can have 2 or 3 children

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Internal nodes can have 2, 3, or 4 children

