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Announcements (2/4/09)

• Midterm on Friday

• Special office hour: 4:00-5:00 Thursday in Jaech
Gallery (6th floor of CSE building)
– This is in addition to my usual 11am office hour.
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Traversing very large datasets
Suppose we had very many pieces of data (as in a 

database), e.g., n = 230 ≈ 109.
How many (worst case) hops through the tree to find a 

node?

• BST

• AVL

• Splay
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Memory considerations
What is in a tree node?  In an object?

Node:
Object obj;
Node left;
Node right;
Node parent;

Object:
Key key;
…data…

Suppose the data is 1KB.  
How much space does the tree take?
How much of the data can live in 1GB of RAM?
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CPU

L1 Cache

Main memory

Disk

Cycles to access:

Registers

L2 Cache

1

Random: 30,000,000

Streamed: 5000

2

30

250
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Minimizing random disk access
In our example, almost all of our data structure is on 
disk.

Thus, hopping through a tree amounts to random 
accesses to disk.  Ouch!

How can we address this problem?
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M-ary Search Tree

Complete tree has height:

# hops for find:

Runtime of find:

Suppose we devised a search tree with branching factor M:
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• Each internal node still has (up to) M-1 keys:
• Order property:

– subtree between two keys x and y 
contain leaves with values v
such that x ≤ v < y

– Note the  “≤”
• Leaf nodes have up to L

sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
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B+ Tree Structure Properties
Root (special case) 

– has between 2 and M children (or root could be a leaf) 

Internal nodes
– store up to M-1 keys
– have between ⎡M/2⎤ and M children

Leaf nodes
– where data is stored
– all at the same depth
– contain between ⎡L/2⎤ and L data items
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B+ Tree: Example
B+ Tree with M = 4 (# pointers in internal node)
and L = 5 (# data items in leaf)

1, AB..

4, XY.. 
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12 44

6 20 27 34 50

All leaves 
at the same 
depth

Data objects…
which I’ll ignore 
in slides

2, GH..

19 

24

Definition for later: “neighbor” is the next sibling to the left or right.
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Disk Friendliness

What makes B+ trees disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
• Much of tree structure can be loaded into memory

irrespective of data object size
• Data actually resides in disk
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B+ trees vs. AVL trees

Suppose again we have n = 230 ≈ 109 items:

• Depth of AVL Tree

• Depth of B+ Tree with M = 256, L = 256

Great, but how to we actually make a B+ tree and keep it 
balanced…?
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Building a B+ Tree with Insertions

The empty 
B-Tree

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
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Insert(12,40,45,38)
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M = 3 L = 3 18

Insertion Algorithm

1. Insert the key in its leaf in 
sorted order

2. If the leaf ends up with L+1 
items, overflow!
– Split the leaf into two nodes:

• original with  ⎡(L+1)/2⎤
smaller keys

• new one with ⎣(L+1)/2⎦
larger keys

– Add the new child to the parent
– If the parent ends up with M+1

children, overflow!

3. If an internal node ends up 
with M+1 children, overflow!
– Split the node into two nodes:

• original with  ⎡(M+1)/2⎤
children with smaller keys

• new one with ⎣(M+1)/2⎦
children with larger keys

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in 
two and hang the new nodes 
under a new root

5. Propagate keys up tree.
This makes the tree deeper!
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Delete(32)
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And Now for Deletion…

M = 3 L = 3 20
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Delete(16)
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Delete(16)
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Delete(14)
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M = 3 L = 3 26

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer 
than ⎡L/2⎤ items, underflow!
– Adopt data from a neighbor; 

update the parent
– If adopting won’t work, delete 

node and merge with neighbor
– If the parent ends up with 

fewer than ⎡M/2⎤ children, 
underflow!
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Deletion Slide Two
3. If an internal node ends up with fewer 

than ⎡M/2⎤ children, underflow!
– Adopt from a neighbor;

update the parent
– If adoption won’t work,

merge with neighbor
– If the parent ends up with fewer than ⎡M/2⎤

children, underflow!

4. If the root ends up with only one child, 
make the child the new root of the tree

5. Propagate keys up through tree.

This reduces the 
height of the tree!
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Thinking about B+ Trees

• B+ Tree insertion can cause (expensive) splitting 
and propagation up the tree

• B+ Tree deletion can cause (cheap) adoption or 
(expensive) merging and propagation up the tree

• Split/merge/propagation is rare if M and L are large   
(Why?)

• Pick branching factor M and data items/leaf L such 
that each node takes one full page/block of 
memory/disk.
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Complexity

• Find:  
• Insert:

– find:  
– Insert in leaf:
– split/propagate up:

• Claim:  O(M) costs are negligible
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Tree Names You Might Encounter

– “B-Trees”
• More general form of B+ trees, allows data at internal nodes too
• Range of children is (key1,key2) rather than [key1, key2)

– B-Trees with M = 3, L = x are called 2-3 trees
• Internal nodes can have 2 or 3 children

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Internal nodes can have 2, 3, or 4 children


