CSE 326: Data Structures
B-Trees and B+ Trees

Steve Seitz %
Winter 2009 —

N

Announcements (2/4/09)

* Midterm on Friday

* Special office hour: 4:00-5:00 Thursday in Jaech
Gallery (6t floor of CSE building)
— This is in addition to my usual 11am office hour.

Traversing very large datasets

Suppose we had very many pieces of data (as in a
database), e.g., n =230~ 107,

How many (worst case) hops through the tree to find a
node?

« BST
« AVL

* Splay

Memory considerations

What is in a tree node? In an object?

Node:
Object obj;
Node left;
Node right;
Node parent;

Object:
Key key;
...data...

Suppose the data is 1KB.
How much space does the tree take?
How much of the data can live in IGB of RAM?

Cycles to access:
CPU
— Registers 1
|
? L1 Cache 2
| | L2 Cache 30
Main memory 250

Random: 30,000,000
Streamed: 5000

5

| Disk

Minimizing random disk access

In our example, almost all of our data structure is on
disk.

Thus, hopping through a tree amounts to random
accesses to disk. Ouch!

How can we address this problem?

M-ary Search Tree

Suppose we devised a search tree with branching factor M:

Complete tree has height:

hops for find:

Runtime of find: 7

B+ Trees
(book calls these B-trees)

* Each internal node still has (up to) M-1 keys:
* Order property:
— subtree between two keys X and y
contain leaves with values v
such that x <v <y
— Note the “<”

* Leafnodes have up to L

HuOEBIENE

sorted keys.

B+ Tree Structure Properties

Root (special case)

— has between 2 and M children (or root could be a leaf)
Internal nodes

— store up to M-1 keys

— have between | M/2] and M children
Leaf nodes

— where data is stored

— all at the same depth

— contain between [L/2 | and L data items

B+ Tree: Example

B+ Tree with M = 4 (# pointers in internal node)
andL = 5 (# data items in leaf)

Data objects...
which I’ll ignore
in slides

1, AB..

2,GH.| [8] 28] All leaves

4, XY.. at the same
depth

10
Definition for later: “neighbor” is the next sibling to the left or right.

Disk Friendliness

What makes B+ trees disk-friendly?

1. Many keys stored in a node

* All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

* Much of tree structure can be loaded into memory
irrespective of data object size

* Data actually resides in disk

11

B+ trees vs. AVL trees
Suppose again we have n = 230 = 107 items:
* Depth of AVL Tree

* Depth of B+ Tree with M =256, L. = 256

Great, but how to we actually make a B+ tree and keep it
balanced...?

12

Building a B+ Tree with Insertions

3 3
Insert(3) Insert(18) Insert(14) Insert(30)
— —_—5 —_—5 4| ———5> 14| ——>
18 18
The empty
B-Tree
M=3L=3
13 M=3L=3 1
B B | e
3|18/ |32 311832
31118 3|18 3118 Insert(16)
Insert(32) Insert(36) 141130]36| —— |14//30||36
141 (30| ——— > |14 |30 —— > |14]]30 15 15
18
. . /nsert(lS)
3 (/18 D 18 | |32
14| | 30 301! | 36
M=3L=3 . M=3L=23 ’

17

Insertion Algorithm

1. Insert the key in its leaf in 3.

sorted order

2. If'the leaf ends up with L+1
items, overflow!

— Split the leaf into two nodes:
original with [(L+1)/2]]
smaller keys
new one with | (L+1)/2]
larger keys

— Add the new child to the parent

If an internal node ends up

with M+1 children, overflow!

— Split the node into two nodes:
original with [(M+1)/2]
children with smaller keys
new one with L (M+1)/2]
children with larger keys

— Add the new child to the parent

— Ifthe parent ends up with M+1

items, overflow!

— If the parent ends up with M+1

children, overflow! 4.

S

This makes the tree deeper!

Split an overflowed root in
two and hang the new nodes
under a new root

Propagate keys up tree. s

Delete(32)

_

18] |

' !

!15
3

40 !
40

3 15 18 32| |40 15 18
12| |16 30| (36| |45 12| | 16 30 45
14 38 14

19

12| |16 3038 |45
14
M=3L=3

12 | | 16 30|38 |45

20

Delete(16) .

RREES

Delete(16)
—_—

40 18|36 | | 40

12| |16 30| (38| |45 30| 38| |45

M=3L=3 21

40 3
12 30| (38| |45 12
14 14
M=3L=3

22

Delete(14) .

M=3L=3 23

12 | | 30 38| |45 12

24

M=3L =3 25

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than [L/27 items, underflow!

— Adopt data from a neighbor;
update the parent

— If adopting won’t work, delete
node and merge with neighbor

— If the parent ends up with
fewer than [M/2] children,
underflow!

26

Deletion Slide Two

3. If an internal node ends up with fewer
than [M/2] children, underflow!
— Adopt from a neighbor;
update the parent
— If adoption won’t work,
merge with neighbor

— If the parent ends up with fewer than [M/2]
children, underflow!

- - This reduces the
4. If the root ends up with only one child, | /" ,iont of the tree!

make the child the new root of the tree

5. Propagate keys up through tree. 277

Thinking about B+ Trees

* B+ Tree insertion can cause (expensive) splitting
and propagation up the tree

* B+ Tree deletion can cause (cheap) adoption or
(expensive) merging and propagation up the tree

* Split/merge/propagation is rare if M and L are large
(Why?)

* Pick branching factor M and data items/leaf L such

that each node takes one full page/block of
memory/disk.

28

Complexity

* Find:
* Insert:
— find:
— Insert in leaf:
— split/propagate up:

* Claim: O(M) costs are negligible

29

Tree Names You Might Encounter

— “B-Trees”
* More general form of B+ trees, allows data at internal nodes too

* Range of children is (keyl.,key?2) rather than [keyl, key2)
— B-Trees withM = 3, L = X are called 2-3 trees
* Internal nodes can have 2 or 3 children

— B-Trees withM = 4, L = X are called 2-3-4 trees

« Internal nodes can have 2, 3, or 4 children

30

