CSE 326: Data Structures B-Trees and B+ Trees

Steve Seitz Winter 2009

3

Announcements (2/4/09)

- Midterm on Friday
- Special office hour: 4:00-5:00 Thursday in Jaech Gallery (6th floor of CSE building)
 - This is *in addition to* my usual 11am office hour.

Traversing very large datasets

- Suppose we had very many pieces of data (as in a database), e.g., $n = 2^{30} \approx 10^9$.
- How many (worst case) hops through the tree to find a node?
- BST
- AVL
- Splay

Memory considerations

What is in a tree node? In an object?

Node:

Object obj; Node left; Node right; Node parent;

Object: Key key; ...data...

Suppose the data is 1KB.

How much space does the tree take? How much of the data can live in 1GB of RAM?

Minimizing random disk access

In our example, almost all of our data structure is on

Thus, hopping through a tree amounts to random accesses to disk. Ouch!

How can we address this problem?

B+ Trees

(book calls these B-trees)

3 7 12 21

7<x<12

- Each internal node still has (up to) *M*-1 keys:
- Order property:
 - subtree between two keys *x* and *y* contain leaves with *values* v
 - such that $x \le v < y$
- Leaf nodes have up to L

21<>

/12<x<21

B+ Tree Structure Properties

Root (special case)

- has between 2 and **M** children (or root could be a leaf)

Internal nodes

- store up to M-1 keys
- have between $\lceil M/2 \rceil$ and *M* children

Leaf nodes

- where data is stored
- all at the same depth
- contain between $\lfloor L/2 \rfloor$ and L data items

Disk Friendliness

What makes B+ trees disk-friendly?

- 1. Many keys stored in a node
 - All brought to memory/cache in one disk access.
- Internal nodes contain *only* keys;
 Only leaf nodes contain keys and actual *data*
 - Much of tree structure can be loaded into memory irrespective of data object size
 - Data actually resides in disk

B+ Tree: Example

B+ Tree with M = 4 (# pointers in internal node) and L = 5 (# data items in leaf)

Definition for later: "neighbor" is the next sibling to the left or right.

B+ trees vs. AVL trees

Suppose again we have $n = 2^{30} \approx 10^9$ items:

- Depth of AVL Tree
- Depth of B+ Tree with M = 256, L = 256

Great, but how to we actually make a B+ tree and keep it balanced...?

11

23

M = 3 L = 3

Deletion Algorithm

1. Remove the key from its leaf

- 2. If the leaf ends up with fewer than [L/2] items, underflow!
 - Adopt data from a neighbor; update the parent
 - If adopting won't work, delete node and merge with neighbor
 - If the parent ends up with fewer than [m/2] children, underflow!

Deletion Slide Two

- 3. If an internal node ends up with fewer than $\lceil m/2 \rceil$ children, **underflow**!
 - Adopt from a neighbor; update the parent
 - If adoption won't work, merge with neighbor
 - If the parent ends up with fewer than [m/2] children, underflow!
- 4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!

Thinking about B+ Trees

- B+ Tree insertion can cause (expensive) splitting and propagation up the tree
- B+ Tree deletion can cause (cheap) adoption or (expensive) merging and propagation up the tree
- Split/merge/propagation is rare if **M** and **L** are large (*Why*?)
- Pick branching factor **M** and data items/leaf **L** such that each node takes one full page/block of memory/disk.

5. Propagate keys up through tree.

Complexity	Tree Names You Might Encounter
 Find: Insert: find: Insert in leaf: split/propagate up: 	 "B-Trees" More general form of B+ trees, allows data at internal nodes too Range of children is (key1,key2) rather than [key1, key2) B-Trees with <i>M</i> = 3, <i>L</i> = x are called 2-3 trees Internal nodes can have 2 or 3 children B-Trees with <i>M</i> = 4, <i>L</i> = x are called 2-3-4 trees Internal nodes can have 2, 3, or 4 children
• Claim: O(M) costs are negligible	
29	30