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CSE 326 D t St tCSE 326 Data Structures
Midterm Review

Hal Perkins
Winter 2008

Dates

• Midterm Friday!
• Project 2b due next Wednesday
• Homework 4

– Out soon, due a week from Friday

Logistics

• Closed Notes
• Closed Book except for one 5x8 or smaller 

notecard with hand-written (only) notes
• Open Mind
• You may bring a calculator, though don’t 

even think about loading it with notes oreven think about loading it with notes or 
programs.  And you probably won’t find it 
of much use anyway.

Material Covered

• Everything we’ve talked/read in class up to 
AVL tAVL trees
– And for AVL trees, up to inserting and 

rotations, but not implementations in Java
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Material Not Covered
• We generally won’t make you write 

syntactically correct Java code (pseudocodesyntactically correct Java code (pseudocode
okay unless requested otherwise)

• We won’t make you do a super hard proof
• We won’t test you on the gory details of 

generics, interfaces, etc. in Java
– But you should know the basic ideas since we 

spent lecture time on them and had to deal with 
them in project 2A

Order Notation: Definition
O( f(n) ) :  a set or class of functions

g(n) ∈ O( f(n) ) iff there exist consts c and n0
such that: 

g(n) ≤ c f(n) for all n ≥ n0

Example: g(n) =1000n vs f(n) = n2Example:  g(n) =1000n vs. f(n) = n2

Is g(n) ∈ O( f(n) ) ?
Pick: n0 = 1000, c = 1

Log?
logkn ∈ O(log2 n)?

log2n2 ∈ O(log2 n)? 

Definition of Order Notation
• Upper bound: T(n)  = O(f(n)) Big-O

Exist constants c and n’ such that 
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n)  = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’
• Tight bound: T(n) = θ(f(n)) ThetaTight bound: T(n)   θ(f(n)) Theta

When both hold:
T(n)  =  O(f(n))
T(n)  =  Ω(f(n))
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Priority Queue ADT
• Checkout line at the supermarket ???
• Printer queues ???
• operations: insert, deleteMin

6   2

insert deleteMin
15  23

12   18
45   3    7

Implementations of Priority Queue ADT

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Bi S h T (BST)Binary Search Tree (BST)

Binary Heap

Tree Review

A
root(T):

Tree T

E

B

D F

C

G

IH

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):

(F) IH

LJ MK N

ancestors(F):
descendents(G):
subtree(C):

Heap Structure Property
• A binary heap is a complete binary tree.
• Complete binary tree – binary tree that is 

completely filled, with the possible exception 
f th b tt l l hi h i fill d l ft t i htof the bottom level, which is filled left to right.

Examples:
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Heap Order Property
Heap order property: For every non-root 

node X, the value in the parent of X is 
less than (or eq al to) the al e in Xless than (or equal to) the value in X.

8020

10

996040

8020

10

85
1530

996040

50 700

85

not a heap

Representing Complete 
Binary Trees in an Array

A From node i:
1

GED
CB

J KH I

F

L

From node i:

left child:
right child:
parent:

7
2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

85 996040

50 700

85

65

Insert: percolate up

996040

8020

10

85 996040

50 700

85

65 15

8015

10

992040

50 700

85

65 60
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DeleteMin: percolate down

1520

10

996040

50 700

85

65

6520

15

996040

6520

50 700

85

BuildHeap: Floyd’s Method
5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

115

12

27184

96103

1

d-Heaps
• Each node has d children
• Still representible by array

4

9654

23

8 1012

7

11

• Good choices for d:
– (choose a power of two 

for efficiency)
– fit one set of children in 

a cache line 3 7 2 8 5 12 11 10 6 9112 4a cache line
– fit one set of children on 

a memory page/disk 
block

3 7 2 8 5 12 11 10 6 9112

Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 

Does this help insert or deleteMin more?
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
l( ) i di t t d d t ith 0 1 hild

Definition: Null Path Length

npl(x) = min distance to a descendant with 0 or 1 children 

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0 ??

?

000

0?1Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
valuesvalues

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
– result: tree is at least as “heavy” on the left as 

the right
Are leftist trees…
complete? 
balanced?

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two 
(distinct) leftist heaps T1 and T2

a

L R

merge
T1

< b

a

L

merge

L1 R1

b

L2 R2

T2

a < b L1

b

L2 R2

R1

Leftist Merge Continued

a a

L1 R’

R’ = Merge(R1, T2)

R’ L1

If npl(R’) > npl(L1)

runtime:
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Leftist Merge Example

1210

5
1

0 0

merge

7

3
?

0
1

merge
1210

87

3
1

0 0

0

7

14
0

1210

5

8

1

0 0

0

10

5
?

0 merge

12

8

0

0

14

8

12

0

0

(special case)

Sewing Up the Leftist Example

3
?

3
?

3
1

8
010

5
?

0

7

3

14

0

0

8
0

0

10

5
1

0

7

3

14

0

0
8

12

0

0

10

5 1

0

7

3

14

0

0

12
0 12

0 12

Done?

Finally…(Leftist) 

8
0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

0
10

5 1

0

12
0

12
0

Skew Heaps
Problems with leftist heaps

– extra storage for npl
– extra complexity/logic to maintain and check npl– extra complexity/logic to maintain and check npl 
– right side is “often” heavy and requires a switch

Solution: skew heaps
– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right g y g g

path
– amortized time for: merge, insert, deleteMin = O(log 

n)
– however, worst case time for all three = O(n)



8

Merging Two Skew Heaps

a

merge
T1 a

L1 R1

bT2

a < b L1

merge

b

R1

L2 R2 L2 R2

Only one step per iteration, with children always switched

Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial trees with at most

one tree of any height
What’s a forest?

What’s a binomial tree?

• Order property
– Each binomial tree has the heap-order 

property

The Binomial Tree, Bh
• Bh has height h and exactly 2h nodes
• Bh is formed by making Bh-1 a child of another 

Bh-1

R t h tl h hild• Root has exactly h children
• Number of nodes at depth d is binomial coeff. 

– Hence the name; we will not use this last 
property 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
h

B0 B1 B2 B3B0 B1 B2 B3

Binomial Queue with n
elements

Binomial Q with n elements has a unique structural 
representation in terms of binomial trees!

Write n in binary:    n = 1101 (base 2) = 13 (base 10)

1 B3 1 B2 No B1 1 B0



9

Merging Two Binomial 
Queues

Essentially like adding two binary numbers!

1 C bi th t f t1. Combine the two forests
2. For k from 1 to maxheight {

a. m ← total number of  Bk’s in the two BQs
b. if m=0:   continue;
c. if m=1:   continue;
d. if m=2:   combine the two Bk’s to form a Bk+1

# of 1’s
0+0 = 0
1+0 = 1
1+1 = 0+c

e. if m=3:   retain one Bk and combine the 
other two to form a Bk+1

}

Claim: When this process ends, the forest
has at most one tree of any height

1+1  0+c
1+1+c = 1+c

Example: Binomial Queue 
Merge

H1: H2:

31

7

-1

2 1 3

8 11 5

5

9 6

7

21

6

Example: Binomial Queue 
Merge

H1: H2:

3

1

7

-1

2 1 3

8 11 5

5

9 6

721

6

Example: Binomial Queue 
Merge

H1: H2:

3

1

7

-1

2 1 3

8 11 5

5

9 621

67
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Example: Binomial Queue 
Merge

H1: H2:

3

1

7

-1

2 1 3

8 11 5 5

6 9 6

7

21

Example: Binomial Queue 
Merge

H1: H2:

3

1

7

-1

2 1 3

8 11 5 5

6 9 6

7

21

More Recursive Tree 
Calculations:

Tree Traversals
A traversal is an order for 

visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right 

subtree

+

*

2 4

5

• In-order: Left subtree, root, right 
subtree

• Post-order: Left subtree, right subtree, 
root

(an expression tree)

The Dictionary ADT

• Data:
a set of

• gerbil
small rodent

ti t( )– a set of
(key, value) 
pairs

• Operations:
I t (k

• rat
larger rodent

• mouse
annoying rodent

• Mickey Mouse
truly annoying, but very 

insert(mouse, ….)

find(rat)
• rat

larger rodent– Insert (key, 
value)

– Find (key)
– Remove (key) The Dictionary ADT is sometimes 

called the “Map ADT”

y y g, y
rich, rodent

larger rodent, … 
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Binary Search Tree Data 
Structure

8

• Structural property
– each node has ≤ 2 children
– result:

121062

115

8
• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
4 14

13

7 9
than root s key

– all keys in right subtree larger
than root’s key

– result: easy to find any given key

• What must I know about what I 
store?

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)

10
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root key)

2092

155

307 17 else if (key > root.key)
return Find(key,

root.right);
else
return root;

}

7

Runtime:

Insert in BST

155

10
Insert(13)
Insert(8)

2092

155

307 17

Insert(8)
Insert(31)

I i h l

Runtime:

Insertions happen only 
at the leaves – easy!

Deletion in BST
10

2092

155

307 177

Why might deletion be harder than insertion?
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Non-lazy Deletion – The Leaf 
Case

10Delete(17)

2092

155

( )

307 17

Deletion – The One Child Case

10Delete(15)

2092

155

( )

307

Deletion – The Two Child Case
10

Delete(5)

3092

205

7

( )

What can we replace 5 with?

Lazy Deletion
Instead of physically deleting 
nodes, just mark them as deleted

+ simpler
+ physical deletions done in 

batches
+ some adds just flip deleted 

flag

2092

155

10

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to 

be modified (e.g., min and 
max)

2092

307 17
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n)        – strong enough!
2. is easy to maintain                  – not too strong!

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤ balance(x) ≤ 1,   for every node x

• Ensures small depth• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes
• Easy to maintain

– Using single and double rotations

The AVL Tree Data Structure

8

Structural properties
1. Binary tree property

121062

115

82. Balance property:
balance of every node is
between -1 and 1

Result:
Worst case depth is

O(log n)

4 14137 9

( g )

Ordering property
– Same as for BST 15

1171

84

6

5

3

1171

84

6

5

3

1171

2

5



14

AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider The insertion is in theFour cases to consider.  The insertion is in the
1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

Fix: Apply Single Rotation

12

AVL Property violated at this node (x)

3

1 6
00

1
6

3

1 0

1

2

1

Single Rotation:   
1. Rotate between x and child

Single rotation in general
a

Z
b

hZ
Y

X
h

h

h ≥ -1

b

X < b < Y < a < Z

a

ZYXh+1 h h

Height of tree before?   Height of tree after?  Effect on Ancestors?

Single rotation example

21103

205

15

17 21103

1

2 4

17

3 20

15

21

10

5

1

2

4

17
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Fix: Apply Double Rotation

11
2 1

2
AVL Property violated at this node (x)

3

1 6
00

3

6

0

1

6

3
0

1

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Double rotation in general
a

b
c h

h ≥ 0

Z
W

X
Yh-1h h -1

c

W < b <X < c < Y < a < Z

a

Z

b

W X
Yh-1 hh h

Height of tree before?   Height of tree after?  Effect on Ancestors?

Double rotation, step 1

104

178

15

16104

3 6

16

5

178

15

106

4

3

16

5

Double rotation, step 2

106

178

15

1610
4

3

16

5

6 17

15

10

84

3

16

5
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Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one (sinlge or double) rotation is sufficient!


