CSE 326 Data Structures Midterm Review

Hal Perkins
Winter 2008

- You may bring a calculator, though don't even think about loading it with notes or programs. And you probably won't find it of much use anyway.


## Dates

- Midterm Friday!
- Project 2b due next Wednesday
- Homework 4
- Out soon, due a week from Friday


## Logistics

- Closed Notes
- Closed Book except for one $5 x 8$ or smaller notecard with hand-written (only) notes
- Open Mind
- Everything we've talked/read in class up to AVL trees
- And for AVL trees, up to inserting and rotations, but not implementations in Java


## Material Covered

## Material Not Covered

- We generally won't make you write syntactically correct Java code (pseudocode okay unless requested otherwise)
- We won't make you do a super hard proof
- We won't test you on the gory details of generics, interfaces, etc. in Java
- But you should know the basic ideas since we spent lecture time on them and had to deal with them in project 2A


## Order Notation: Definition

$\mathbf{O}(f(n))$ : a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n)) \quad$ iff there exist consts $c$ and $n_{0}$ such that:
$g(n) \leq c f(n)$ for all $n \geq n_{0}$
Example: $g(n)=1000 n$ vs. $f(n)=n^{2}$
Is $g(n) \in \mathrm{O}(\mathrm{f}(n))$ ?
Pick: n0 = 1000, c = 1

| Log? |
| :---: |
| $\log _{k} n \in O\left(\log _{2} n\right) ?$ |
|  |
| $\log _{2} \mathrm{n}^{2} \in \mathrm{O}\left(\log _{2} \mathrm{n}\right) ?$ |
|  |
|  |

## Definition of Order Notation

- Upper bound: $T(n)=O(f(n))$

Exist constants $c$ and $n$ ' such that
$T(n) \leq c f(n)$ for all $n \geq n^{\prime}$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega

Exist constants $c$ and $n$ ' such that
$T(n) \geq c g(n)$ for all $n \geq n^{\prime}$

- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta When both hold:
$T(n)=O(f(n))$
$T(n)=\Omega(f(n))$


## Priority Queue ADT

- Checkout line at the supermarket ???
- Printer queues ???
- operations: insert, deleteMin


Tree Review
$\operatorname{root}(\mathbf{T})$ :
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):


| Implementations of Priority Queue ADT |  |  |
| :---: | :---: | :---: |
|  | insert | deleteMin |
| Unsorted list (Array) |  |  |
| Unsorted list (Linked-List) |  |  |
| Sorted list (Array) |  |  |
| Sorted list (Linked-List) |  |  |
| Binary Search Tree (BST) |  |  |
| Binary Heap |  |  |

## Heap Structure Property

- A binary heap is a complete binary tree.
- Complete binary tree - binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.


## Examples:



## Heap Order Property

Heap order property: For every non-root node $X$, the value in the parent of $X$ is less than (or equal to) the value in $X$.

not a heap

## Heap Operations

- findMin:
- insert(val): percolate up.
- deleteMin: percolate down.




## DeleteMin: percolate down



## BuildHeap: Floyd's Method

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 12 & 5 & 11 & 3 & 10 & 6 & 9 & 4 & 8 & 1 & 7 & 2 \\
\hline
\end{array}
$$

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!


## Operations on d-Heap

- Insert : runtime =
- deleteMin: runtime =

Does this help insert or deleteMin more?

## Definition: Null Path Length

null path length (npl) of a node $x=$ the number of nodes between $x$ and a null in its subtree

OR
$\operatorname{npl}(\mathrm{x})=\min$ distance to a descendant with 0 or 1 children

- $n p l($ null $)=-1$
- $n p l($ leaf $)=0$
- $n p l($ single-child node $)=0$

Equivalent definitions:

1. $n p l(x)$ is the height of largest complete subtree rooted at $x$
2. $n p l(x)=1+\min \{n p l(\operatorname{left}(\mathrm{x})), n p l(\operatorname{right}(\mathrm{x}))\}$

## Merging Two Leftist Heaps

- merge $\left(T_{1}, T_{2}\right)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ merge



## Leftist Heap Properties

- Heap-order property
- parent's priority value is $\leq$ to childrens' priority values
- result: minimum element is at the root
- Leftist property
- For every node $x, n p l(\operatorname{left}(x)) \geq n p l(\operatorname{right}(x))$
- result: tree is at least as "heavy" on the left as the right

Are leftist trees...
complete?
balanced?



## Sewing Up the Leftist Example





## Merging Two Skew Heaps

merge


Only one step per iteration, with children always switched

## The Binomial Tree, $\mathrm{B}_{h}$

- $B_{h}$ has height $h$ and exactly $2^{h}$ nodes
- $\mathrm{B}_{h}$ is formed by making $\mathrm{B}_{h-1}$ a child of another $B_{h-1}$
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. ( $\left.\begin{array}{l}h \\ d\end{array}\right)$
- Hence the name; we will not use this last property



## Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

What's a forest?
What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property


## Merging Two Binomial Queues

Essentially like adding two binary numbers!
. Combine the two forests
2. For $k$ from 1 to maxheight $\{$
a. $m \leftarrow$ total number of $\mathrm{B}_{k}$ 's in the two BQs
b. if $m=0$ : continue; $\qquad$ \# of 1's
c. if $m=1$ : continue
d. if $m=2$ : combine the two $B_{k}$ 's to form a $B_{k+1}$ $0+0=0$
e. if $m=3$ : retain one $B_{k}$ and combine the $1+1+c=1+c$ $1+1=0+$ other two to form a $B_{k+1}$
\}
Claim: When this process ends, the forest
has at most one tree of any height
,



## More Recursive Tree Calculations: <br> Tree Traversals




Runtime:

## Deletion in BST



Why might deletion be harder than insertion?
Delete(17)


## Deletion - The One Child Case

Delete(15)


## Deletion - The Two Child Case

Delete(5)


What can we replace 5 with?

## Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to
 be modified (e.g., min and max)


## Balanced BST

## Observation

- BST: the shallower the better
- For a BST with $n$ nodes
- Average height is $\mathrm{O}(\log n)$
- Worst case height is $O(n)$
- Simple cases such as insert( $1,2,3, \ldots, n$ ) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\mathrm{O}(\log n)$

- strong enough!

2. is easy to maintain

- not too strong!


## The AVL Balance Condition

Left and right subtrees of every node
have equal heights differing by at most 1
Define: balance $(x)=$ height $(x$. left $)-$ height $(x$. right $)$

AVL property: $-1 \leq \operatorname{balance}(x) \leq 1$, for every node $x$

- Ensures small depth
- Will prove this by showing that an AVL tree of height $h$ must have a lot of (i.e. O( $\left.2^{h}\right)$ ) nodes
- Easy to maintain
- Using single and double rotations


## The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1
Result:
Worst case depth is O( $\log n$ )

## Ordering property

- Same as for BST



## AVL tree insert

Let $x$ be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

1. left subtree of the left child of $x$.
2. right subtree of the left child of $x$.
3. left subtree of the right child of $x$.
4. right subtree of the right child of $x$.

Idea: Cases $1 \& 4$ are solved by a single rotation.
Cases $2 \& 3$ are solved by a double rotation.

## Single rotation in general



X $<\mathbf{b}<\mathbf{Y}<\mathbf{a}<$ Z


Height of tree before? Height of tree after? Effect on Ancestors?

## Fix: Apply Single Rotation

AVL Property violated at this node (x)


Single Rotation:

1. Rotate between x and child



Double rotation in general


Height of tree before? Height of tree after? Effect on Ancestors?


## Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

- case \#1: Perform single rotation and exit
? case \#2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one (sinlge or double) rotation is sufficient!

