CSE 326: Data Structures
Final Exam Review

Kathleen Tuite
Winter 2008

Last Lecture

Our ADTS (& implementations)

Stack (array, list)
Queue (array, list)
PQ (various flavors of heaps)

Dictionary (various flavors of trees, hash
tables)

Announcements

Exam Tuesday 2:30 pm, here

— Logistics: same as midterm (closed book, but 1/2 page of
new handwritten notes, plus the notes you had for the
midterm)

Office hours/review next week
— Monday: Monday, CSE 503, 4:30-5:30++

HW return, etc.

— Most hw returned by today; with luck the last one will be
ready on Monday afternoon

— Project 3 grades by the end of finals week

Other stuff we learned about

Asymptotic Analysis

Union Find
Sorting NP Problems

Graphs P Problems
— Searching

: NP Complete
— Topological sort

— Shortest path
— MST

“Cultural” TOpiCS (i.e. you don’t need to understand the finer details for the test):
— Dynamic programming
— NP

Pre-Midterm Topics (1) Asymptotic Analysis

(A more thorough list...)
* Big-O: upper bound

— Linked lists. Simple linked lists, doubly linked « Big-Theta: tight bound (both O and Q)
lists, circularly linked lists.

* Big-Q: lower bound

— Stacks and Queues, array and list implementations.

— Recursion. Designing algorithms recursively.

— Asymptotic analysis, Big-O. Worst case, upper =9(n)

£ (n)
bound, lower bound, analyzing loops, recurrences,
amortized complexity. g (n)
— Trees — definitions
S Ny N
Recurrence Relations Trees

mergesort(array, left, right){
if (right - left >1){
mid = floor((right - left)/2);
mergesort(array, left, mid);

Binary tree: root, left subtree (possibly empty),
right subtree (possibly empty)

Tree nodes: data, left child ptr, right child ptr

mergesort(array, mid+1, right); * For a tree of height h:
merge(array, left, mid, right); — Max # of leaves: 2h
I — Max # of nodes: 2M! -1

H

— Min # of leaves: 1
— Min # of nodes: h+1

Inorder/preorder/postorder traversal

Running time: T(n) =2 T(n/2) + n = O(n log n)

Pre-Midterm Topics (2)

— Priority queues — definition and operations.
— Binary Heaps, D-heaps - Findmin, Deletemin, Insert.
Additional operations of increase, decrease, buildheap.

— Leftist Heaps and Skew Heaps - Findmin, Deletemin,
Insert. Additional operations of merge, increase, decrease

— Binomial Queues - Findmin, Deletemin, Insert. Additional
operations of merge, increase, decrease.

— Dictionary ADT

— Binary search trees — Inorder, preorder, postorder
traversals, insert, delete, find.

— AVL trees - Single and double rotations, insert, find.

Heaps

» Heap property (min heap): node value is always less
than the value of its children
» Leftist Heap
— Leftist tree + heap property
— For every node x, npl(left(x)) >= npl(right(x))
— Result: tree tends to be left-heavy
— Every subtree of a leftist tree is leftist
— Special merge, increase, decrease operations
» Skew Heap
— Like Leftist Heap but always swap

Priority Queues

* Operations

— Find min

— Delete min

— Insert

— Change priority
» Applications

— Scheduling, heap sort, greedy algorithms where
you always want to get the next smallest/largest
thing

More Heaps

* Binomial Queues
— Forest of trees
— Min could be any tree’s root

Qoaeee
ORERCICRO

AVL Trees

Left Left Case

Root

Right Right Case
ivot

Root
)N /
inserte Pivot AN /A _Pi
matching them to (5
the top most row. SN //F/
N

is t 2 | /B [
ent a
tati

vof
p
7

A

Left Right Case

Right Left Case

(great diagram from Wikipedia)

Splay Trees

Post Midterm Topics (1)

— Splay trees - Splaying, insert, find.
— B-trees. Motivation (esp. large data on secondary storage),
choice of M and L, insert (no delete).

— Hashing. Properties of good hash functions. Selecting hash
table size. Separate chaining and open addressing. Linear
Probing, Quadratic Probing, & Double Hashing to resolve
collisions. Rehashing.

— Disjoint Union/Find. Up-trees. Weighted union (union by
size) and path compression.

— Sorting. Insertion sort, Selection sort, Heap sort, Merge
sort, quicksort.

— Bucket sort, Radix sort. Lower bound on comparison
sorting. In-place sorting. Stable sorting.

14

B-Trees

Block-oriented storage, size of

disk 'ﬁk

each node = size of 1 page on
M: number of children of *QE} dd
d, d.d,

interior nodes (M-1 keys)

7
d.d, d,d,

L: number of data values
(including keys) in each leaf
node

Remind me to do an example
on the board at the end of class

Hashing

* Separate chaining (lambda can be > 1)
* Closed hashing

— Linear and quadratic probing, double hashing
— Lambda must < 1, < .5 for quadratic

* Importance of a good hash function

Union Find

* To do a union on two nodes that aren’t root
nodes... do a find on both of them first to get
the root nodes (set representatives) and union
the roots

* If nodes are already roots, find is fast

* If not, you get your trees compressed along the

way

When i1s closed hashing better
than separate chaining?

Not very often...

But, for small record sizes (a few words or less) the
benefits are:

— More space-efficient since no pointers or need to allocate
extra space

— More time-efficient since no need to allocate extra space
— Better locality
— Easier to serialize

Good for portable devices with small
memory/processing power

Good for multithreaded use

Sorting

Comparison-based sorting methods can’t beat
O(n log n) running time
Quicksort and Mergesort recursive

Mergesort cannot do merge in place - requires
extra memory

Non-comparison-based sorting: Bucket Sort
(Theta(n)), Radix Sort (O(nk))

Post Midterm Topics (2) Graphs

— Graphs. Directed and undirected. Adjacency list
and adjacency matrix representations.

_ Topological sorting. * Adjacency list, adjacency matrix

 List of vertices and edges

— Graph searching. Depth-first, breadth-first search, A
best-first search. o<l \
— Shortest paths. Dijkstra's algorithm. Greedy ‘J
Algorithms. A
— Minimum spanning tree: Prim’s and Kruskal’s Drected e 0 Adaoerey it Ropreeniion o R
algorithms TN
— Dynamic programming: Floyd-Warshall shortest-
paths algorithm ?
21 Undirected Graph (b) Adjacanc: 7y List Reprasentation (b} Undirected Graph (b) Adjacenc; y Matrix Representation (b)
Graph Alg Running Times And That’s it...
Algorlthm Runmng Time ° Hope you’Ve leamed a lot
DES/BFS O(|V] + [E|) * Good luck on the final & best wishes for the
future
Topological Sort O(VI +[E]) « Time for whiteboard examples / questions?
Dijkstra O(E| log |V|)
Prim O(|E| log [V))
Kruskal O(|E| log |E|)

24

