
CSE 326: Data Structures

Final Exam Review

Kathleen Tuite

Winter 2008

Last Lecture

2

Announcements

• Exam Tuesday 2:30 pm, here
– Logistics: same as midterm (closed book, but 1/2 page of

new handwritten notes, plus the notes you had for the
midterm)

• Office hours/review next week
– Monday: Monday, CSE 503, 4:30-5:30++

• HW return, etc.
– Most hw returned by today; with luck the last one will be

ready on Monday afternoon

– Project 3 grades by the end of finals week

Our ADTS (& implementations)

• Stack (array, list)

• Queue (array, list)

• PQ (various flavors of heaps)

• Dictionary (various flavors of trees, hash

tables)

3

Other stuff we learned about

• Asymptotic Analysis

• Union Find

• Sorting

• Graphs

– Searching

– Topological sort

– Shortest path

– MST

• “Cultural” Topics (i.e. you don’t need to understand the finer details for the test):

– Dynamic programming

– NP
4

5

Pre-Midterm Topics (1)

(A more thorough list…)

– Linked lists. Simple linked lists, doubly linked

lists, circularly linked lists.

– Stacks and Queues, array and list implementations.

– Recursion. Designing algorithms recursively.

– Asymptotic analysis, Big-O. Worst case, upper

bound, lower bound, analyzing loops, recurrences,

amortized complexity.

– Trees – definitions

Asymptotic Analysis

• Big-O: upper bound

• Big-Theta: tight bound (both O and !)

• Big-!: lower bound

6

Recurrence Relations

mergesort(array, left, right){

if (right - left >1){

mid = floor((right - left)/2);

mergesort(array, left, mid);

mergesort(array, mid+1, right);

merge(array, left, mid, right);

}

}

Running time: T(n) = 2 T(n/2) + n = O(n log n)

7

Trees

• Binary tree: root, left subtree (possibly empty),

right subtree (possibly empty)

• Tree nodes: data, left child ptr, right child ptr

• For a tree of height h:

– Max # of leaves: 2h

– Max # of nodes: 2h+1 -1

– Min # of leaves: 1

– Min # of nodes: h+1

• Inorder/preorder/postorder traversal
8

9

Pre-Midterm Topics (2)

– Priority queues – definition and operations.

– Binary Heaps, D-heaps - Findmin, Deletemin, Insert.

Additional operations of increase, decrease, buildheap.

– Leftist Heaps and Skew Heaps - Findmin, Deletemin,

Insert. Additional operations of merge, increase, decrease

– Binomial Queues - Findmin, Deletemin, Insert. Additional

operations of merge, increase, decrease.

– Dictionary ADT

– Binary search trees – Inorder, preorder, postorder

traversals, insert, delete, find.

– AVL trees - Single and double rotations, insert, find.

Priority Queues

• Operations

– Find min

– Delete min

– Insert

– Change priority

• Applications

– Scheduling, heap sort, greedy algorithms where

you always want to get the next smallest/largest

thing

10

Heaps

• Heap property (min heap): node value is always less

than the value of its children

• Leftist Heap

– Leftist tree + heap property

– For every node x, npl(left(x)) >= npl(right(x))

– Result: tree tends to be left-heavy

– Every subtree of a leftist tree is leftist

– Special merge, increase, decrease operations

• Skew Heap

– Like Leftist Heap but always swap

11

More Heaps

• Binomial Queues

– Forest of trees

– Min could be any tree’s root

12

AVL Trees

13

(great diagram from Wikipedia)

14

Post Midterm Topics (1)

– Splay trees - Splaying, insert, find.

– B-trees. Motivation (esp. large data on secondary storage),
choice of M and L, insert (no delete).

– Hashing. Properties of good hash functions. Selecting hash
table size. Separate chaining and open addressing. Linear
Probing, Quadratic Probing, & Double Hashing to resolve
collisions. Rehashing.

– Disjoint Union/Find. Up-trees. Weighted union (union by
size) and path compression.

– Sorting. Insertion sort, Selection sort, Heap sort, Merge
sort, quicksort.

– Bucket sort, Radix sort. Lower bound on comparison
sorting. In-place sorting. Stable sorting.

Splay Trees

15

Zig-zig

Zig-zag

B-Trees

• Block-oriented storage, size of

each node = size of 1 page on

disk

• M: number of children of

interior nodes (M-1 keys)

• L: number of data values

(including keys) in each leaf

node

• Remind me to do an example

on the board at the end of class

Hashing

• Separate chaining (lambda can be > 1)

• Closed hashing

– Linear and quadratic probing, double hashing

– Lambda must < 1, < .5 for quadratic

• Importance of a good hash function

When is closed hashing better

than separate chaining?

• Not very often…

• But, for small record sizes (a few words or less) the
benefits are:

– More space-efficient since no pointers or need to allocate
extra space

– More time-efficient since no need to allocate extra space

– Better locality

– Easier to serialize

• Good for portable devices with small
memory/processing power

• Good for multithreaded use

Union Find

• To do a union on two nodes that aren’t root

nodes… do a find on both of them first to get

the root nodes (set representatives) and union

the roots

• If nodes are already roots, find is fast

• If not, you get your trees compressed along the

way

Sorting

• Comparison-based sorting methods can’t beat

O(n log n) running time

• Quicksort and Mergesort recursive

• Mergesort cannot do merge in place - requires

extra memory

• Non-comparison-based sorting: Bucket Sort

(Theta(n)), Radix Sort (O(nk))

21

Post Midterm Topics (2)

– Graphs. Directed and undirected. Adjacency list
and adjacency matrix representations.

– Topological sorting.

– Graph searching. Depth-first, breadth-first search,
best-first search.

– Shortest paths. Dijkstra's algorithm. Greedy
Algorithms.

– Minimum spanning tree: Prim’s and Kruskal’s
algorithms

– Dynamic programming: Floyd-Warshall shortest-
paths algorithm

Graphs

• List of vertices and edges

• Adjacency list, adjacency matrix

Graph Alg Running Times

O(|V| + |E|)DFS/BFS

O(|E| log |E|)Kruskal

O(|E| log |V|)Prim

O(|E| log |V|)Dijkstra

O(|V| + |E|)Topological Sort

Running TimeAlgorithm

And That’s it…

• Hope you’ve learned a lot

• Good luck on the final & best wishes for the

future

• Time for whiteboard examples / questions?

24

