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CS SCSE 326: Data Structures
NP

Hal Perkins
Winter 2008
Lecture 27

Today’s Agenda
• Solving two pencil-on-paper 

puzzles
1−=πie

puzzles
– Euler Circuits
– Hamiltonian circuits

• Hamiltonian circuits and NP 
complete problems

L. Euler
(1707-1783)
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• The NP = P problem
– Your chance to win a Turing 

award!
• Weiss sec. 9.7

W. R. 
Hamilton

(1805-1865)

It’s Puzzle Time!
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Which of these can you draw without lifting your 
pencil, drawing each line only once?
Can you start and end at the same point?

Historical Puzzle: Seven Bridges 
of Königsberg

KNEIPHOFF

PREGEL
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Want to cross all bridges but…
Can cross each bridge only once
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A “Multigraph” for the Bridges of 
Königsberg
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Find a path that
traverses every edge
exactly once

Euler Circuits and Tours
• Euler tour: a path through a graph that visits each edge 

exactly oncey
• Euler circuit: an Euler tour that starts and ends at the 

same vertex
• Named after Leonhard Euler (1707-1783), who 

cracked this problem and founded graph theory in 
1736

• Some observations for undirected graphs:
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– An Euler circuit exists iff the graph is connected and each 
vertex has even degree (= # of edges on the vertex)

– An Euler tour exists iff the graph is connected and either all 
vertices have even degree or exactly two have odd degree

Euler Circuit Problem

• Problem: Given an undirected graph G, 
fi d E l i itfind an Euler circuit

• How can we check if one exists in linear 
time?

• Given that an Euler circuit exists, how do 
we construct an Euler circuit for G?
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we construct an Euler circuit for G?

Finding Euler Circuits

• Given a graph G = (V,E), find an Euler circuit 
in G

C h k if i t i O(|V|+|E|) ti– Can check if one exists in O(|V|+|E|) time 
(check degrees)

• Basic Euler Circuit Algorithm: 
1. Do an edge walk from a start vertex until 

you are back to the start vertex.  You 
never get stuck because of the even 
degree property. 

2. Remove that walk, leaving several 
components each with the even degree 

t R i l fi d E l i it
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property.  Recursively find Euler circuits 
for these. 

3. Splice all these circuits into an Euler 
circuit

• Running time = O(|V| + |E|)
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Euler Circuit Example
A

B C

D E

F

G
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F

Euler(A) :

Euler Circuit Example
A

B C

D E

F

G
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F

Euler(A) :
A B G E D G C A

Euler Circuit Example
A

B C B CB C

D E

F

G

B C

D E

F
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Euler(A) :
A B G E D G C A Euler(B)

Euler Circuit Example
A

B C

D E

F

G

B C

D E

F
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F

Euler(A) :
A B G E D G C A

F
Euler(B):
B D F E C B
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Euler Circuit Example
A

B C

D E

F

G

B C

D E

F
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F

Euler(A) :
A B G E D G C A

F
Euler(B):
B D F E C B

Splice
A B D F E C B G E D G C A

Euler with a Twist: 
Hamiltonian Circuits

• Euler circuit: A cycle that goes 
through each edge exactly once B Cg g y

• Hamiltonian circuit: A cycle that 
goes through each vertex
exactly once

• Does graph I have:
– An Euler circuit?
– A Hamiltonian circuit?

B C

D E

G I
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A Hamiltonian circuit?
• Does graph II have:

– An Euler circuit?
– A Hamiltonian circuit?

D E

G II

Finding Hamiltonian Circuits in 
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
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Finding Hamiltonian Circuits in 
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

16
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Finding Hamiltonian Circuits in 
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

• One solution: Search through all paths to find one that 
visits each vertex exactly once
– Can use your favorite graph search algorithm (DFS!) to find 

various paths
• This is an exhaustive search (“brute force”) algorithm

W t ?
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• Worst case ?

Finding Hamiltonian Circuits in 
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

• One solution: Search through all paths to find one that 
visits each vertex exactly once
– Can use your favorite graph search algorithm (DFS!) to find 

various paths
• This is an exhaustive search (“brute force”) algorithm

W t d t h ll th
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• Worst case need to search all paths
– How many paths??

Analysis of our Exhaustive 
Search Algorithm

• Worst case need to search
B C

Worst case need to search 
all paths
– How many paths?

• Can depict these paths as a 
search tree

D E

G

B
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B

D      G     C

G  E   D  E  C  G  E  

Etc. Search tree of paths from B

Analysis of our Exhaustive 
Search Algorithm

• Let the average branching factor of 
h d i thi t b Beach node in this tree be B 

• |V| vertices, each with ≈ B branches
• Total number of paths ≈ B·B·B … ·B 

= O(B|V|)
• Worst case Exponential time!

B

D      G     C

G  E   D  E  C  G  E  

Etc.

20

Etc.

Search tree of paths from B
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1E+55
1E+60

Exponential Time

1E+20
1E+25
1E+30
1E+35
1E+40
1E+45
1E+50
1E+55

2^N
1.2^N
N 5̂
N 3̂
5N

PC, since Big Bang

PC, 1 day
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1
100000
1E+10
1E+15

1 10 100 1000

, y

Review: Polynomial versus 
Exponential Time

• Most of our algorithms so far have been 
O(log N) O(N) O(N log N) or O(N2)O(log N), O(N), O(N log N) or O(N2) 
running time for inputs of size N
– These are all polynomial time

algorithms
– Their running time is O(Nk) for some k 

0
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> 0
• Exponential time BN is asymptotically 

worse than any polynomial function Nk for 
any k

When is a problem easy?

• We’ve seen some “easy” graph problems:
Graph search– Graph search

– Shortest-path
– Minimum Spanning Tree

• Not easy for us to come up with, but easy 
for the computer, once we know algorithm.
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When is a problem hard?

• Almost everything we’ve seen in class has 
h d li ti l ithhad a near linear time algorithm

• But of course, computers can’t solve every
problem quickly.

• In fact, there are perfectly reasonable 
sounding problems that no computer could
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sounding problems that no computer could 
ever solve in any amount of time. 
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Shortest vs. Longest Path

• Finding the shortest path is easy--that is, 
k ffi i t l ith N lwe know an efficient algorithm. Namely 

DFS or BFS.
• How do we find the longest path?
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Longest Path

• Again, no choice but to enumerate all 
thpaths.

• Q: Why doesn’t DFS work?
– A node is visited only once, therefore only one 

path through each node is considered. But as 
we saw, there could be exponentially many 
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paths. DFS is exploring only one per node.

Subset Sum

• 4-number sum: Given a list of N integers 
d t t k th 4 b th tand target k, are there 4 numbers that sum 

to k?
• General Subset Sum: Given N integers 

and a target k, is there some subset of 
integers that sum to k?
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integers that sum to k?

Solving Subset Sum

• Only thing to do is try every possible 
bi ticombination.

• How many possible subset are there of N 
integers?
– 2N. So again, exponential in input size.

• For 4 numbers there are N choose 4
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• For 4 numbers there are N choose 4 
possible subsets to try. Approx. N4. 
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The Complexity Class P

• The set P is defined as the set of all 
bl th t b l d iproblems that can be solved in 

polynomial worse case time
– Also known as the polynomial time

complexity class
– All problems that have some algorithm
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All problems that have some algorithm
whose running time is O(Nk) for some k

• Examples of problems in P: sorting, 
shortest path, Euler circuit, etc.

The Complexity Class NP

• Definition: NP is the set of all problems 
f hi h i did t l tifor which a given candidate solution can 
be tested in polynomial time

• Example of a problem in NP:
– Hamiltonian circuit problem: Why is this 

in NP?

30

in NP?

The Complexity Class NP

• Definition: NP is the set of all problems 
for which a given candidate solution canfor which a given candidate solution can 
be tested in polynomial time

• Example of a problem in NP:
– Hamiltonian circuit problem: Why is this 

in NP?
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• Given a candidate path, can test in 
linear time if it is a Hamiltonian circuit –
just check if all vertices are visited 
exactly once in the candidate path

Why NP?

• NP stands for Nondeterministic Polynomial time
– Why “nondeterministic”? Corresponds to algorithms that can 

guess a solution (if it exists) the solution is then verified to 
be correct in polynomial time

– Nondeterministic algorithms don’t exist – purely theoretical 
idea invented to understand how hard a problem could be

• Examples of problems in NP:
– Hamiltonian circuit: Given a candidate path, can test in linear 

time if it is a Hamiltonian circuit
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time if it is a Hamiltonian circuit
– Satisfiability: Given a circuit made out of AND, OR, NOT 

gates: is there an input that makes it output “1”?
– All problems that are in P      (why?)
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NP-Complete Problems
• The “hardest” problems in NP are called NP-complete 

If any NP complete problem is in P then all of– If any NP-complete problem is in P, then all of 
NP is in P

• Examples:
– Hamiltonian circuit
– Satisfiability
– Traveling salesman: find the shortest path that visits all nodes in 

i ht d h ( k t t d & d )
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a weighted graph (okay to repeat edges & nodes)
– Graph coloring: can the vertices of a graph be colored using K 

colors, such that no two adjacent vertices have the same color?
– Crossword puzzle construction: can a given set of 2N words, 

each of length N, be arranged in an NxN crossword puzzle?

P, NP, and Exponential Time 
Problems

• All currently known
algorithms for NP-complete EXPTIMEg p
problems run in exponential
worst case time
– Finding a polynomial time 

algorithm for any NPC 
problem would mean?

• Diagram depicts relationship

NP

P

NPC
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• Diagram depicts relationship 
between P, NP, and 
EXPTIME (class of problems 
that provably require
exponential time to solve)

It is believed that 
P ≠ NP ≠ EXPTIME

Your Chance to Win a Turing 
Award

• It is generally believed that P ≠ NP, i.e.
there are problems in NP that are not in 
P
– But no one has been able to show even 

one such problem!
– This is the fundamental open problem in 

Alan Turing
(1912-1954)
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p p
theoretical computer science

– Nearly everyone has given up trying to 
prove it.  Instead, theoreticians prove 
theorems about what follows once we 
assume P ≠ NP !

Coping with NP-Completeness
1. Settle for algorithms that are fast on average: 

Worst case still takes exponential time, but doesn’t 
occur very often. 
But some NP Complete problems are also average timeBut some NP-Complete problems are also average-time 

NP-Complete! 
2. Settle for fast algorithms that give near-optimal 

solutions: In traveling salesman, may not give the 
cheapest tour, but maybe good enough. 
But finding even approximate solutions to some NP-

Complete problems is NP-Complete!
3 Just get the exponent as low as possible! Much
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3. Just get the exponent as low as possible! Much 
work on exponential algorithms for satisfiability: in 
practice can often solve circuits with 1,000+ inputs
But even 2n/100 will eventual hit the exponential curve!
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Great Quick Reference
• Computers and Intractability: A Guide to 

th Th f NP C l t bthe Theory of NP-Completeness, by 
Michael S. Garey and David S. Johnson
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