
1

CS SCSE 326: Data Structures
NP

Hal Perkins
Winter 2008
Lecture 27

Today’s Agenda
• Solving two pencil-on-paper

puzzles
1−=πie

puzzles
– Euler Circuits
– Hamiltonian circuits

• Hamiltonian circuits and NP
complete problems

L. Euler
(1707-1783)

2

• The NP = P problem
– Your chance to win a Turing

award!
• Weiss sec. 9.7

W. R.
Hamilton

(1805-1865)

It’s Puzzle Time!

3

Which of these can you draw without lifting your
pencil, drawing each line only once?
Can you start and end at the same point?

Historical Puzzle: Seven Bridges
of Königsberg

KNEIPHOFF

PREGEL

4

Want to cross all bridges but…
Can cross each bridge only once

2

A “Multigraph” for the Bridges of
Königsberg

5

Find a path that
traverses every edge
exactly once

Euler Circuits and Tours
• Euler tour: a path through a graph that visits each edge

exactly oncey
• Euler circuit: an Euler tour that starts and ends at the

same vertex
• Named after Leonhard Euler (1707-1783), who

cracked this problem and founded graph theory in
1736

• Some observations for undirected graphs:

6

– An Euler circuit exists iff the graph is connected and each
vertex has even degree (= # of edges on the vertex)

– An Euler tour exists iff the graph is connected and either all
vertices have even degree or exactly two have odd degree

Euler Circuit Problem

• Problem: Given an undirected graph G,
fi d E l i itfind an Euler circuit

• How can we check if one exists in linear
time?

• Given that an Euler circuit exists, how do
we construct an Euler circuit for G?

7

we construct an Euler circuit for G?

Finding Euler Circuits

• Given a graph G = (V,E), find an Euler circuit
in G

C h k if i t i O(|V|+|E|) ti– Can check if one exists in O(|V|+|E|) time
(check degrees)

• Basic Euler Circuit Algorithm:
1. Do an edge walk from a start vertex until

you are back to the start vertex. You
never get stuck because of the even
degree property.

2. Remove that walk, leaving several
components each with the even degree

t R i l fi d E l i it

8

property. Recursively find Euler circuits
for these.

3. Splice all these circuits into an Euler
circuit

• Running time = O(|V| + |E|)

3

Euler Circuit Example
A

B C

D E

F

G

9

F

Euler(A) :

Euler Circuit Example
A

B C

D E

F

G

10

F

Euler(A) :
A B G E D G C A

Euler Circuit Example
A

B C B CB C

D E

F

G

B C

D E

F

11

Euler(A) :
A B G E D G C A Euler(B)

Euler Circuit Example
A

B C

D E

F

G

B C

D E

F

12

F

Euler(A) :
A B G E D G C A

F
Euler(B):
B D F E C B

4

Euler Circuit Example
A

B C

D E

F

G

B C

D E

F

13

F

Euler(A) :
A B G E D G C A

F
Euler(B):
B D F E C B

Splice
A B D F E C B G E D G C A

Euler with a Twist:
Hamiltonian Circuits

• Euler circuit: A cycle that goes
through each edge exactly once B Cg g y

• Hamiltonian circuit: A cycle that
goes through each vertex
exactly once

• Does graph I have:
– An Euler circuit?
– A Hamiltonian circuit?

B C

D E

G I

14

A Hamiltonian circuit?
• Does graph II have:

– An Euler circuit?
– A Hamiltonian circuit?

D E

G II

Finding Hamiltonian Circuits in
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p

15

Finding Hamiltonian Circuits in
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

16

5

Finding Hamiltonian Circuits in
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

• One solution: Search through all paths to find one that
visits each vertex exactly once
– Can use your favorite graph search algorithm (DFS!) to find

various paths
• This is an exhaustive search (“brute force”) algorithm

W t ?

17

• Worst case ?

Finding Hamiltonian Circuits in
Graphs

• Problem: Find a Hamiltonian circuit in a graph G
– Sub-problem: Does G contain a Hamiltonian circuit?p
– No known easy algorithm for checking this…

• One solution: Search through all paths to find one that
visits each vertex exactly once
– Can use your favorite graph search algorithm (DFS!) to find

various paths
• This is an exhaustive search (“brute force”) algorithm

W t d t h ll th

18

• Worst case need to search all paths
– How many paths??

Analysis of our Exhaustive
Search Algorithm

• Worst case need to search
B C

Worst case need to search
all paths
– How many paths?

• Can depict these paths as a
search tree

D E

G

B

19

B

D G C

G E D E C G E

Etc. Search tree of paths from B

Analysis of our Exhaustive
Search Algorithm

• Let the average branching factor of
h d i thi t b Beach node in this tree be B

• |V| vertices, each with ≈ B branches
• Total number of paths ≈ B·B·B … ·B

= O(B|V|)
• Worst case Exponential time!

B

D G C

G E D E C G E

Etc.

20

Etc.

Search tree of paths from B

6

1E+55
1E+60

Exponential Time

1E+20
1E+25
1E+30
1E+35
1E+40
1E+45
1E+50
1E+55

2^N
1.2^N
N 5̂
N 3̂
5N

PC, since Big Bang

PC, 1 day

21

1
100000
1E+10
1E+15

1 10 100 1000

, y

Review: Polynomial versus
Exponential Time

• Most of our algorithms so far have been
O(log N) O(N) O(N log N) or O(N2)O(log N), O(N), O(N log N) or O(N2)
running time for inputs of size N
– These are all polynomial time

algorithms
– Their running time is O(Nk) for some k

0

22

> 0
• Exponential time BN is asymptotically

worse than any polynomial function Nk for
any k

When is a problem easy?

• We’ve seen some “easy” graph problems:
Graph search– Graph search

– Shortest-path
– Minimum Spanning Tree

• Not easy for us to come up with, but easy
for the computer, once we know algorithm.

23

When is a problem hard?

• Almost everything we’ve seen in class has
h d li ti l ithhad a near linear time algorithm

• But of course, computers can’t solve every
problem quickly.

• In fact, there are perfectly reasonable
sounding problems that no computer could

24

sounding problems that no computer could
ever solve in any amount of time.

7

Shortest vs. Longest Path

• Finding the shortest path is easy--that is,
k ffi i t l ith N lwe know an efficient algorithm. Namely

DFS or BFS.
• How do we find the longest path?

25

Longest Path

• Again, no choice but to enumerate all
thpaths.

• Q: Why doesn’t DFS work?
– A node is visited only once, therefore only one

path through each node is considered. But as
we saw, there could be exponentially many

26

paths. DFS is exploring only one per node.

Subset Sum

• 4-number sum: Given a list of N integers
d t t k th 4 b th tand target k, are there 4 numbers that sum

to k?
• General Subset Sum: Given N integers

and a target k, is there some subset of
integers that sum to k?

27

integers that sum to k?

Solving Subset Sum

• Only thing to do is try every possible
bi ticombination.

• How many possible subset are there of N
integers?
– 2N. So again, exponential in input size.

• For 4 numbers there are N choose 4

28

• For 4 numbers there are N choose 4
possible subsets to try. Approx. N4.

8

The Complexity Class P

• The set P is defined as the set of all
bl th t b l d iproblems that can be solved in

polynomial worse case time
– Also known as the polynomial time

complexity class
– All problems that have some algorithm

29

All problems that have some algorithm
whose running time is O(Nk) for some k

• Examples of problems in P: sorting,
shortest path, Euler circuit, etc.

The Complexity Class NP

• Definition: NP is the set of all problems
f hi h i did t l tifor which a given candidate solution can
be tested in polynomial time

• Example of a problem in NP:
– Hamiltonian circuit problem: Why is this

in NP?

30

in NP?

The Complexity Class NP

• Definition: NP is the set of all problems
for which a given candidate solution canfor which a given candidate solution can
be tested in polynomial time

• Example of a problem in NP:
– Hamiltonian circuit problem: Why is this

in NP?

31

• Given a candidate path, can test in
linear time if it is a Hamiltonian circuit –
just check if all vertices are visited
exactly once in the candidate path

Why NP?

• NP stands for Nondeterministic Polynomial time
– Why “nondeterministic”? Corresponds to algorithms that can

guess a solution (if it exists) the solution is then verified to
be correct in polynomial time

– Nondeterministic algorithms don’t exist – purely theoretical
idea invented to understand how hard a problem could be

• Examples of problems in NP:
– Hamiltonian circuit: Given a candidate path, can test in linear

time if it is a Hamiltonian circuit

32

time if it is a Hamiltonian circuit
– Satisfiability: Given a circuit made out of AND, OR, NOT

gates: is there an input that makes it output “1”?
– All problems that are in P (why?)

9

NP-Complete Problems
• The “hardest” problems in NP are called NP-complete

If any NP complete problem is in P then all of– If any NP-complete problem is in P, then all of
NP is in P

• Examples:
– Hamiltonian circuit
– Satisfiability
– Traveling salesman: find the shortest path that visits all nodes in

i ht d h (k t t d & d)

33

a weighted graph (okay to repeat edges & nodes)
– Graph coloring: can the vertices of a graph be colored using K

colors, such that no two adjacent vertices have the same color?
– Crossword puzzle construction: can a given set of 2N words,

each of length N, be arranged in an NxN crossword puzzle?

P, NP, and Exponential Time
Problems

• All currently known
algorithms for NP-complete EXPTIMEg p
problems run in exponential
worst case time
– Finding a polynomial time

algorithm for any NPC
problem would mean?

• Diagram depicts relationship

NP

P

NPC

34

• Diagram depicts relationship
between P, NP, and
EXPTIME (class of problems
that provably require
exponential time to solve)

It is believed that
P ≠ NP ≠ EXPTIME

Your Chance to Win a Turing
Award

• It is generally believed that P ≠ NP, i.e.
there are problems in NP that are not in
P
– But no one has been able to show even

one such problem!
– This is the fundamental open problem in

Alan Turing
(1912-1954)

35

p p
theoretical computer science

– Nearly everyone has given up trying to
prove it. Instead, theoreticians prove
theorems about what follows once we
assume P ≠ NP !

Coping with NP-Completeness
1. Settle for algorithms that are fast on average:

Worst case still takes exponential time, but doesn’t
occur very often.
But some NP Complete problems are also average timeBut some NP-Complete problems are also average-time

NP-Complete!
2. Settle for fast algorithms that give near-optimal

solutions: In traveling salesman, may not give the
cheapest tour, but maybe good enough.
But finding even approximate solutions to some NP-

Complete problems is NP-Complete!
3 Just get the exponent as low as possible! Much

36

3. Just get the exponent as low as possible! Much
work on exponential algorithms for satisfiability: in
practice can often solve circuits with 1,000+ inputs
But even 2n/100 will eventual hit the exponential curve!

10

Great Quick Reference
• Computers and Intractability: A Guide to

th Th f NP C l t bthe Theory of NP-Completeness, by
Michael S. Garey and David S. Johnson

37

