CSE 326: Data Structures
 Dynamic Programming -
 Floyd/Warhsall Algorithm

Hal Perkins
Winter 2008
Lecture 26

Single-Source Shortest Path

- Given a graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ and a single distinguished vertex s , find the shortest weighted path from s to every other vertex in G.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?

Analysis

- Total running time for Dijkstra's:
$\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \quad$ (linear scan)
$\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|) \quad$ (heaps)
What if we want to find the shortest path from each point to ALL other points?

Dynamic Programming

- Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).
- Simple Example: Calculating the Nth

Fibonacci number.
$\operatorname{Fib}(\mathrm{N})=\operatorname{Fib}(\mathrm{N}-1)+\operatorname{Fib}(\mathrm{N}-2)$

Dynamic Programming \& Shortest Paths - Floyd-Warshall

- Given a directed graph $G=(V, E)$ with no negative-weight cycles (negative-weight edges may be present), calculate the shortest paths between all pairs of vertices
- Idea: For each pair of verticies vi, vj, find shortest path from vi to vj that only passes through \{v1, v2, ..., vk \}
- Initially $\mathrm{k}=1$. At each step, increase k by 1 . Reexamine each pair vi , vj and see if using vk gives a shorter path than any discovered so far

Floyd-Warshall

- Data structure: $\mathrm{M}[\mathrm{x}][\mathrm{y}]$ contains the shortest known path from x to y. Initially this is just the adjacency matrix for the graph
- This version only shows the computation of the final path lengths - need additional bookkeeping to actually remember the paths

Floyd-Warshall

- Algorithm

$$
\begin{aligned}
& \text { for (int } k=1 ; k=<V ; k++ \text {) } \\
& \text { for (int } i=1 ; i=<V ; i++) \\
& \quad \text { for (int } j=1 ; j=<V ; j++) \\
& \quad \text { if }((M[i][k]+M[k][j])<M[i][j]) \\
& \quad M[i][j]=M[i][k]+M[k][j]
\end{aligned}
$$

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i, j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

$\mathrm{M}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{M}[\mathrm{i}][\mathrm{j}], \mathrm{M}[\mathrm{i}][\mathrm{k}]+\mathrm{M}[\mathrm{k}][\mathrm{j}])$

Floyd-Warshall

- Algorithm
for (int $\mathrm{k}=1 ; \mathrm{k}=<\mathrm{V} ; \mathrm{k}++$) for (int $\mathrm{i}=1 ; \mathrm{i}=<\mathrm{V} ; \mathrm{i}++$) for (int $\mathrm{j}=1 ; \mathrm{j}=<\mathrm{V} ; \mathrm{j}++$)
if (($M[i][k]+M[k][j])<M[i][j])$
$M[i][j]=M[i][k]+M[k][j]$
- Total cost:
- Compared to running Dijkstra’s |V| times?

