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CSE 326: Data Structures
Minimum Spanning Trees

Hal Perkins
Spring 2007
Lectures 26

Today’s Outline

Minim m Spanning TreeMinimum Spanning Tree
1. Prim’s 
2. Kruskal’s

Reading: Weiss, Ch. 9
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Reading: Weiss, Ch. 9

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a 

graph G’=(V, E’) such that:
– E’ is a subset of EE  is a subset of E
– |E’| = |V| - 1
– G’ is connected
– is minimal∑
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G’ is a minimum 
spanning tree.
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Applications: wiring a house, power grids, 
Internet connections

Find the MST
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Two Different Approaches
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Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

Prim’s algorithm
Idea: Grow a tree by adding an edge from the 

“known” vertices to the “unknown” 
ti Pi k th d ith th ll tvertices.  Pick the edge with the smallest 

weight.
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Prim’s Algorithm for MST
A node-based greedy algorithm

Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from 

some known node a
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some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

Find MST using 
Prim’s v4
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Prim’s Algorithm Analysis
Running time: 

Same as Dijkstra’s: O(|E| log |V|)Same as Dijkstra’s: O(|E| log |V|)

Correctness: 
Proof is similar to Dijkstra’s
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Kruskal’s MST Algorithm
Idea: Grow a forest out of edges that do not 

create a cycle.  Pick an edge with the 
ll t i htsmallest weight.

G=(V,E)

v
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Kruskal’s Algorithm for MST
An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with
• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While there are still unmarked edges
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a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the 

MST and mark u and v as connected to each other

Doesn’t it sound familiar? 

Kruskal code
void Graph::kruskal(){
int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);

|E| heap ops
while (edgesAccepted < NUM_VERTICES – 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset){

2|E| finds
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edgesAccepted++;
s.unionSets(uset, vset);

}
}

}
|V| unions
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Find MST using Kruskal’s
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Total Cost:
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• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?

Kruskal’s Algorithm: Correctness
It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:
Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
⇒ Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered after
adding e1 (must exist: u and v unconnected when e1 considered)
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adding e1 (must exist: u and v unconnected when e1 considered)
⇒ cost(e2) ≥ cost(e1)
⇒ can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK
⇒ TK must also be minimal – contradiction!


