CSE 326: Data Structures
 Minimum Spanning Trees

Hal Perkins
Spring 2007
Lectures 26

Minimum Spanning Trees

Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$, find a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ such that:
$-E^{\prime}$ is a subset of E
$-\left|E^{\prime}\right|=|V|-1$
$-G^{\prime}$ is connected
$-\sum_{(u, v) \in E^{\prime}} \mathrm{C}_{u v}$ is minimal

Applications: wiring a house, power grids, Internet connections

Today's Outline

Minimum Spanning Tree

1. Prim's
2. Kruskal's

Reading: Weiss, Ch. 9

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

Kruskals’s Algorithm Completely different!

Prim's algorithm

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

Prim's Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the "root"

- mark it as known
- Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

Prim's Algorithm Analysis

Running time:

Same as Dijkstra's: $\quad \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Correctness:

Proof is similar to Dijkstra's

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An edge-based greedy algorithm

Kruskal code

void Graph: : kruskal() \{

int edgesAccepted $=0$;
DisjSet s(NUM_VERTICES);
while (edgesAccepted < NUM_VERTICES 1) \{
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset $=$ s.find(u);
vset = s.find(v);
 if (uset != vset)\{

edgesAccepted++;

s.unionSets(uset, vset);
\}
\}
\}

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{K}.
Suppose T_{K} is not minimum:
Pick another spanning tree $T_{\text {min }}$ with lower cost than T_{K}
Pick the smallest edge $e_{1}=(u, v)$ in T_{K} that is not in $\mathrm{T}_{\text {min }}$
$\mathrm{T}_{\text {min }}$ already has a path p in $\mathrm{T}_{\text {min }}$ from u to v
\Rightarrow Adding e_{1} to $\mathrm{T}_{\text {min }}$ will create a cycle in $\mathrm{T}_{\text {min }}$
Pick an edge e_{2} in p that Kruskal's algorithm considered after adding e_{1} (must exist: u and v unconnected when e_{1} considered) $\Rightarrow \operatorname{cost}\left(e_{2}\right) \geq \operatorname{cost}\left(e_{1}\right)$
\Rightarrow can replace e_{2} with e_{1} in $\mathrm{T}_{\min }$ without increasing cost!
Keep doing this until $T_{\text {min }}$ is identical to T_{K}
$\Rightarrow \mathrm{T}_{\mathrm{K}}$ must also be minimal - contradiction!

