
1

CSE 326: Data Structures
Minimum Spanning Trees

Hal Perkins
Spring 2007
Lectures 26

Today’s Outline

Minim m Spanning TreeMinimum Spanning Tree
1. Prim’s
2. Kruskal’s

Reading: Weiss, Ch. 9

2

Reading: Weiss, Ch. 9

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a

graph G’=(V, E’) such that:
– E’ is a subset of EE is a subset of E
– |E’| = |V| - 1
– G’ is connected
– is minimal∑

∈ '),(
c
Evu

uv

G’ is a minimum
spanning tree.

3

Applications: wiring a house, power grids,
Internet connections

Find the MST
4

7

9

1 52

A B F
H

1
7

6

5
11122

3

4

C

D

G

E

4
13

9

10

4

2

Two Different Approaches

5

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

Prim’s algorithm
Idea: Grow a tree by adding an edge from the

“known” vertices to the “unknown”
ti Pi k th d ith th ll tvertices. Pick the edge with the smallest

weight.

G

v

6

known

Prim’s Algorithm for MST
A node-based greedy algorithm

Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from

some known node a

7

some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

Find MST using
Prim’s v4

v2

v3 v5

v1

Start with V1

2

2

5

4
7

1 103

8

v7v6

5 4 6
8

1

V Kwn Distance path
v1
v2
v3
v4

Order Declared Known:
V1

8

v4
v5
v6
v7

V1

3

Prim’s Algorithm Analysis
Running time:

Same as Dijkstra’s: O(|E| log |V|)Same as Dijkstra’s: O(|E| log |V|)

Correctness:
Proof is similar to Dijkstra’s

9

Kruskal’s MST Algorithm
Idea: Grow a forest out of edges that do not

create a cycle. Pick an edge with the
ll t i htsmallest weight.

G=(V,E)

v

10

Kruskal’s Algorithm for MST
An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with
• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While there are still unmarked edges

11

a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the

MST and mark u and v as connected to each other

Doesn’t it sound familiar?

Kruskal code
void Graph::kruskal(){
int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);

|E| heap ops
while (edgesAccepted < NUM_VERTICES – 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset){

2|E| finds

12

edgesAccepted++;
s.unionSets(uset, vset);

}
}

}
|V| unions

4

Find MST using Kruskal’s

A B F H
2 2 3

C
D

G

E

2 1

4

10

8

1
94

2

7

Total Cost:

13

• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?

Kruskal’s Algorithm: Correctness
It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:
Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
⇒ Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered after
adding e1 (must exist: u and v unconnected when e1 considered)

14

adding e1 (must exist: u and v unconnected when e1 considered)
⇒ cost(e2) ≥ cost(e1)
⇒ can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK
⇒ TK must also be minimal – contradiction!

