CSE 326: Data Structures Graphs, Paths \& Dijkstra’s Algorithm

Hal Perkins
Winter 2008
Lectures 22-23

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
- Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
- Is there a path between two given vertices?
- Is the graph (weakly) connected?
- Which one:
- Uses a queue?
- Uses a stack?
- Always finds the shortest path (for unweighted graphs)?

Today’s Outline

Shortest path algorithms

1. Unweighted graphs: BFS
2. Weighted graphs without negative cost edges: Dijkstra’s Algorithm
3. Negative cost edges but no negative cost cycles

Reading: Weiss, Ch. 9

The Shortest Path Problem

Given a graph G, edge costs $c_{i, j}$, and vertices s and t in G, find the shortest path from s to t.

For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k$
(a.k.a. length)
- weighted length of path $p=\sum_{i=0 . . k-1} c_{i, i+1}$ (a.k.a cost)

Path length equals path cost when ?

Single Source Shortest Paths (SSSP)

Given a graph G, edge $\operatorname{costs} c_{i, j}$, and vertex s, find the shortest paths from s to all vertices in G.

- Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i, j}$, find the shortest paths between all pairs of vertices in G.

- Is this harder or easier than SSSP?
- Could we use SSSP as a subroutine to solve this?

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
\qquad

SSSP: Unweighted Version

Ideas? \qquad

\qquad
\qquad

\qquad

\square at most once

\qquad

``` \}
```

void Graph::unweighted (Vertex s){

```
void Graph::unweighted (Vertex s){
    // initialize x.dist=INFINITY for every vertex
    // initialize x.dist=INFINITY for every vertex
    Queue q(NUM_VERTICES);
    Queue q(NUM_VERTICES);
    Vertex v, w;
    Vertex v, w;
    q.enqueue(s);
    q.enqueue(s);
    s.dist = 0;
    s.dist = 0;
    while (!q.isEmpty()){
    while (!q.isEmpty()){
        v = q.dequeue();
        v = q.dequeue();
        l}\begin{array}{l}{\mathrm{ each edge examined}}\\{\mathrm{ at most once - if adjacency }}\\{\mathrm{ lists are used }}
        l}\begin{array}{l}{\mathrm{ each edge examined}}\\{\mathrm{ at most once - if adjacency }}\\{\mathrm{ lists are used }}
        for each w lists are used
        for each w lists are used
            if (w.dist == INFINITY)
            if (w.dist == INFINITY)
            w.dist = v.dist + 1; each vertex enqueued
            w.path = v;
            w.path = v;
            q.enqueue(w);
            q.enqueue(w);
        } total running time:O(-)
        } total running time:O(-)
    }
    }
    11
    11
        for each w adjacent to v
        for each w adjacent to v
            (w.dist = IN
            (w.dist = IN
        }
        }
    } total running time: O(
    } total running time: O(
        )
```

)
    ```

\section*{Dijkstra, Edsger Wybe}

Legendary figure in computer science was a professor at Eindhoven, then later at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

E.W. Dijkstra (1930-2002)

EWD memos online at utexas - fascinating 1972 Turning Award Winner,
Programming Languages, semaphores, and ...

\section*{Dijkstra’s Algorithm: Idea}

weighted graphs
Two kinds of vertices:
- Finished or known vertices
- Shortest distance has been computed
- Unknown vertices
- Have tentative distance

\section*{Dijkstra’s Algorithm: Idea}

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

\section*{Dijkstra’s Algorithm: Pseudocode}

Initialize the cost of each node to \(\infty\)

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node \(b\) with the lowest cost
Mark \(b\) as known
For each node \(a\) adjacent to \(b\)
\(a\) 's cost \(=\min (a\) 's old cost, \(b\) 's cost + cost of \((b, a))\)
```

void Graph::dijkstra(Vertex s){
Vertex v,w;
nitialize s.dist = 0 and set dist of all other
vertices to infinity
while (there exist unknown vertices, find the
one b with the smallest distance)
b.known = true;
for each a adjacent to b
if (!a.known)
if (b.dist + Cost_ba < a.dist){
decrease(a.dist to= b.dist + Cost_ba);
a.path = b;
}
}
}

```
\begin{tabular}{|l|l|l|l|}
\hline V & Known & Dist & path \\
\hline v 0 & & & \\
\hline v 1 & & & \\
\hline v 2 & & & \\
\hline v 3 & & & \\
\hline v 4 & & & \\
\hline v 5 & & & \\
\hline v 6 & & & \\
\hline
\end{tabular}

\section*{Dijkstra’s Alg: Implementation}

Initialize the cost of each node to \(\infty\)
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
Select the unknown node \(b\) with the lowest cost
Mark \(b\) as known
For each node \(a\) adjacent to \(b\)
\[
a \text { 's cost }=\min (a \text { 's old cost, } b \text { 's cost }+\operatorname{cost} \text { of }(b, a))
\]

What data structures should we use?

\section*{Running time?}

\section*{Dijkstra’s Algorithm: Summary}
- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition for correctness:
- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest path

\section*{Correctness: The Cloud Proof}


How does Dijkstra's decide which vertex to add to the Known set next?
- If path to \(\mathbf{V}\) is shortest, path to \(\mathbf{W}\) must be at least as long
- So the path through \(\mathbf{W}\) to \(\mathbf{V}\) cannot be any shorter!

\section*{Dijkstra’s vs BFS}
\begin{tabular}{lll} 
At each step: & At each step: \\
1) \()\) Pick closest unknown vertex & 1) & Pick vertex from queue \\
2) Add it to finished vertices & 2) & Add it to visited vertices \\
3) Update distances & 3) & Update queue with neighbors \\
& & \\
Dijkstra's Algorithm & & Breadth-first Search
\end{tabular}

Some Similarities:

\section*{Correctness: Inside the Cloud}

Prove by induction on \# of nodes in the cloud:
Initial cloud is just the source with shortest path 0 Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node \(\boldsymbol{v}\) (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra's algorithm not work?

\section*{The Trouble with Negative Weight Cycles}


What's the shortest path from A to E?
Problem?```

