CSE 326: Data Structures
 Graphs - Topological Sort

Hal Perkins
Winter 2008
Lectures 22-23

Agenda

- Basic graph terminology
- Graph representations
- Topological sort
- Reference: Weiss, Ch. 9

What's the shortest way to get from Seattle to Pullman? Edge labels:

Some Applications: Moving Around Washington

What's the fastest way to get from Seattle to Pullman? Edge labels:

Some Applications:
Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don't (edges are two-way):

\mathbf{v} is adjacent to \mathbf{u} if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

More Definitions: Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):
$p=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$
p $=$ \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
A cycle is a path that starts and ends at the same node: p $=$ \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
p = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle $\}$
A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

- Every tree is a graph!
- Not all graphs are trees!

A graph is a tree if

- There are no cycles (directed or undirected)

- There is a path from the root to every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

Graph Representations

0 . List of vertices + list of edges

1. 2-D matrix of vertices (marking edges in the cells) "adjacency matrix"
2. List of vertices each with a list of adjacent vertices "adjacency list"

Things we might want to do:

Vertices and edges may be labeled
-

- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists

Representation 1: Adjacency Matrix

A |V| $\mathbf{x}|\mathbf{V}|$ array in which an element (\mathbf{u}, \mathbf{v}) is true if and only if there is an edge from \mathbf{u} to \mathbf{v}

space requirements.
runtime:

Representation 2: Adjacency List

A $\mathbf{| V |} \mathbf{| - a r y}$ list (array) in which each entry stores a list (linked list) of all adjacent vertices

space requirements.
runtime:

| Representation 2: Adjacency List |
| :--- | :--- |
| A \|V|-ary list (array) in which each entry stores |
| a list (linked list) of all adjacent vertices |
| space requirements: |

Weighted Edges

- adjacency matrix:
$A[u][v]=\left\{\begin{array}{clll}\text { weight } & \text {, if } & (u, v) & \in E \\ 0 & , \text { if } & (u, v) & \in E\end{array}\right.$

Representation

- adjacency list:

Application: Topological Sort

是
 Topological Sort: Take One

(vertices in \mathbf{V} such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

```
void Graph::topsort(){
    Vertex v, w;
    labelEachVertexWithItsIn-degree();
    for (int counter=0; counter < NUM_VERTICES;
                                    counter++){
        v = findNewVertexOfDegreeZero();
        v.topologicalNum = counter;
        for each w adjacent to v
        w.indegree--;
    }
}
```


Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=Q$.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero Q.enqueue (u)

Note: could use a stack, list, set, box, ... instead of a queue

1. Label each vertex with its in-degree (\# of inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:
void Graph: :topsort()\{
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w; labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v
if (v.indegree == 0)
q.enqueue(v);
while (!q.isEmpty()) \quad get a vertex with $\mathrm{v}=\mathrm{q}$.dequeue(). indegree 0 v.topologicalNum = ++counter; for each w adjacent to v
if (-w.indegree == 0) insert new
q.enqueue(w);
\}
\}
Runtime:

