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CSE 326: Data Structures
Graphs – Topological Sort

Hal Perkins
Winter 2008

Lectures 22-23

Agenda

• Basic graph terminology
• Graph representations• Graph representations
• Topological sort

• Reference: Weiss, Ch. 9
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Graph… ADT?
• Not quite an ADT…

– operations not clear
– the internal data matters

• A formalism for representing 
relationships between objects
Graph G = (V,E)
– Set of vertices:

Han

Leia

Luke

V {Han Leia L ke}
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V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em} 
where each ei connects two
vertices (vi1,vi2)

V = {Han, Leia, Luke}
E = {(Luke, Leia), 

(Han, Leia), 
(Leia, Han)}

Some Applications:
Moving Around Washington
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What’s the shortest way to get from Seattle to Pullman?
Edge labels: 
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Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels: 

Some Applications:
Reliability of Communication

6

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

Graph Definitions
In directed graphs, edges have a specific direction:

Han L k

In undirected graphs, they don’t (edges are two-way):

Han

Leia

Luke

Han Luke

8

v is adjacent to u if (u,v) ∈ E
Leia
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More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can 
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except 
that the first vertex is also the last (in undirected 
graphs, no edge can be repeated)

Trees as Graphs

• Every tree is a graph! A• Every tree is a graph!
• Not all graphs are trees!

A graph is a tree if
– There are no cycles

A

B

D E

C

F
y

(directed or undirected)
– There is a path from the

root to every node

HG

Directed Acyclic Graphs (DAGs)

DAGs are directed 
graphs with no

main()
graphs with no 
(directed) cycles.

add()

mult()

Aside: If program call-
graph is a DAG, then all 

access()
read()

g p ,
procedure calls can be in-
lined

Graph Representations

0.  List of vertices + list of edges

Han

Leia

Luke

1.  2-D matrix of vertices (marking edges in the cells)
“adjacency matrix”

2.  List of vertices each with a list of adjacent vertices
“adjacency list”

Thi i h d

Leia

Vertices and edgesThings we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Vertices and edges
may be labeled
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Representation 1: Adjacency Matrix

A |V| x |V| array in which an element 
(u v) is true if and only if there is an edge(u,v) is true if and only if there is an edge 
from u to v

Han

Leia

Luke

Han Luke Leia
Han

Luke
Leia

Leia

runtime:space requirements:

Weighted Edges
• adjacency matrix:

⎩
⎨
⎧

∉
∈

=
Ev)(u,if,0
E   v)(u, if ,weight

  A[u][v]

1      2      3      4

⎩

1

2

1 2

3

4 3 4

Representation 2: Adjacency List

A |V|-ary list (array) in which each entry stores 
a list (linked list) of all adjacent verticesa list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

runtime:space requirements:

Representation
• adjacency list:

1 2

1

3 4

1
2
3
4

2 3 4
3

1 2
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Application: Topological Sort
Given a directed graph, G = (V,E), output all the 

vertices in V such that no vertex is output before 
any other vertex with an edge to it.any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341 CSE 326

CSE 403

CSE 421

CSE 451

CSE 322

CSE 378

CSE 370
CSE 467

CSE 451

Is the output unique?

Topological Sort: Take One

1 Label each vertex with its in-degree (# of1. Label each vertex with its in degree (# of 
inbound edges)

2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES; 
counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;
for each w adjacent to v
w.indegree--;

}
}

Topological Sort: Take Two

1. Label each vertex with its in-degree
2 Initialize a queue Q to contain all in degree zero2. Initialize a queue Q to contain all in-degree zero 

vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue
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void Graph::topsort(){
Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w;
labelEachVertexWithItsIn-degree();

q.makeEmpty();
for each vertex v

intialize the
queue

if (v.indegree == 0)
q.enqueue(v);

while (!q.isEmpty()){
v = q.dequeue();
v.topologicalNum = ++counter;
for each w adjacent to v

get a vertex with
indegree 0

j
if (--w.indegree == 0)

q.enqueue(w);
}

}

insert new
eligible
vertices

Runtime:

Example
CSE 321

CSE 403

CSE 421

CSE 322

CSE 142 CSE 143 CSE 341

CSE 378

CSE 326

CSE 370

CSE 421

CSE 467

CSE 451

Q:

Output:


