CSE 326: Data Structures
Graphs — Topological Sort

Hal Perkins
Winter 2008
Lectures 22-23

Agenda

Basic graph terminology
Graph representations
Topological sort

« Reference: Weiss, Ch. 9

Graph... ADT?

* Not quite an ADT...
— operations not clear
— the internal data matters

HanQ 9Luke
relationships between objects Leia

» A formalism for representing

Graph G = (V,E)
— Set of vertices:

Vo ={Vi,Va, 5V} v
— Set of edges:

E = {e;.e...e}

where each e; connects two

vertices (V;1,Vi2)

Han, Leia, Luke}
(Luke, Leia),
(Han, Leia),
(Leia, Han)}

={
={

Some Applications:
Moving Around Washington

i

{ Bellingham

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

4

Some Applications:
Moving Around Washington

l!. Rellingham

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Reliability of Communication

{ Bellingham

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

4th

3rd

2nd

1st ¢ T)]
Y U C C n
3 = =. =, e
] @ <] < ©
3 Q O
3 ©

>3

<

If we’re at 3" and Pine, how can we get to
1stand University using Metro?

Graph Definitions

In directed graphs, edges have a specific direction:

Hanw Luke
Leia

In undirected graphs, they don’t (edges are two-way):

Hanoﬁ Luke
Leia

visadjacenttouif (u,v) € E

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

Trees as Graphs

» Every tree is a graph! (A)
» Not all graphs are trees!
grap (&) (©

A graphis atree if ® &) ()
— There are no cycles
(directed or undirected) © ®

— There is a path from the
root to every node

Directed Acyclic Graphs (DAGS)

DAGs are directed

graphs with no O
(directed) cycles.
mult(Q)
dd
Aside: If program call- 2ddo
graph is a DAG, then all
rocedure calls can be in-

P access() readQ

lined

Graph Representations

Hanw Luke
0. List of vertices + list of edges

Leia
1. 2-D matrix of vertices (marking edges in the cells)
“adjacency matrix”
2. List of vertices each with a list of adjacent vertices
“adjacency list”

Vertices and edges
may be labeled

Things we might want to do:

* iterate over vertices

* iterate over edges

* iterate over vertices adj. to a vertex
« check whether an edge exists

Representation 1: Adjacency Matrix

A V] x V] array in which an element
(u,Vv) istrue if and only if there is an edge
fromutov

Han
Han Luke
Luke

Leia

Han Luke Leia

Leia

space requirements: runtime:

Weighted Edges

* adjacency matrix:

Alu]v]

1

2

| weight ,if (U, v) e E
- 0 Jif (U V) e E

3 4

Representation 2: Adjacency List

A |V]-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han
Han Luke
Luke

Leia

Leia

space requirements: runtime:

Representation

* adjacency list:

I

)

> [F—la TF-4

p

B W N P

1 [f—l2 [H

Application: Topological Sort

Given a directed graph, G = (V,E), output all the
vertices in V such that no vertex is output before
any other vertex with an edge to it.

Is the output unique?

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithltsln-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = FindNewVertexOfDegreeZero();

v.topologicalNum = counter;
for each w adjacent to v
w. indegree--;

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices
3. While Q not empty
a. v=Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Note: could use a stack, list, set,

) box, ... instead of a queue
Runtime:

void Graph::topsort(){
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w; Example
labelEachVertexWithltsIn-degree();

q.-makeEmpty(); intialize the
for each vertex v queue
if (v.indegree == 0)
q.-enqueue(Vv);

while (1g.isEmpty()){ |geta vertex with
v = g.dequeue(); indegree 0
v.topologicalNum = ++counter;
for each w adjacent to v

if (--w.indegree == 0) insert new o
g-enqueue(w); eligible :
3} vertices
}
Output:

Runtime:

