CSE 326

How to Explain Inverse

Ackerman's Function in a Data Structures Class

Hal Perkins
Winter 2008

Option 2

- Ackerman's function is defined as
$A(m, n)=\left[\begin{array}{cc}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ \mathrm{~A}(\mathrm{~m}-1, \mathrm{~A}(\mathrm{~m}, \mathrm{n}-1)) & \text { if } m>0 \text { and } n>0\end{array}\right.$
- Therefore, its functional inverse, $\alpha(m, n)$, is $\alpha(m, n)=\min \{i \geq 1 \mid A(i,\lfloor m / n\rfloor)>\log n\}$

Option 1

DON'T

Option 2

- Ackerman's function is defined as
$A(m, n)=\left[\begin{array}{cc}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ \mathrm{~A}(\mathrm{~m}-1, \mathrm{~A}(\mathrm{~m}, \mathrm{n}-1)) & \text { if } m>0 \text { and } n>0\end{array}\right.$
- Therefore, its functional inverse, $\alpha(m, n)$, is $\alpha(m, n)=\min \{i \geq 1 \mid A(i,\lfloor m / n\rfloor)>\log n\}$
- That should make things clear

Option 3

$A(m, n)$ grows veeeeery quickly
$\alpha(\mathrm{m}, \mathrm{n})$ grows veeeeery slowly

Option 3

$A(m, n)$ grows veeeeery quickly

$\alpha(m, n)$ grows veeeeery slowly

Now let's move on to the next topic

Credit: Raimund Seidel, Understanding the Inverse Ackerman Function, EWCG ‘06 invited talk: http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf

Option 4

- Simplify a bit:
- Define $f(n)=A(n, n)$
- Define $\alpha(n)=f^{-1}(n)$
- Then $\alpha(f(n))=n$

Ackerman Values (Wikipedia)

$\alpha(n)=f^{-1}(n)$
$f(n)=A(n, n)$

But it's easier to understand $\log ^{*}(n)$

$\log ^{*} x=$ number of times you need to compute \log to bring value down to at most 1
E.g. $\log ^{*} 2=1$
log* $4=\log ^{*} 2^{2}=2$
$\log * 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1)$
$\log * 65536=\log * 2^{222}=4 \quad(\log \log \log \log 65536=1)$ $\log * 2^{65536}=\ldots \ldots \ldots \ldots \ldots=5$
$\alpha(n)$ grows even slower than this

Option N

Move on to the next topic

