CSE 326

How to Explain Inverse Ackerman's Function in a Data Structures Class

> Hal Perkins Winter 2008

Option 2

Option 2

• Ackerman's function is defined as

 $A(m,n) = \begin{bmatrix} n+1 & \text{if } m = 0 \\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{bmatrix}$

• Therefore, its functional inverse, $\alpha(m,n)$, is

 $\alpha(m,n) = \min\{i \ge 1 \mid A(i, \lfloor m/n \rfloor) > \log n\}$

• That should make things clear

Option 3

A(m,n) grows veeeery quickly

 $\alpha(m,n)$ grows veeeery slowly

Option 3

A(m,n) grows veeeery quickly

 $\alpha(m,n)$ grows veeeery slowly

Now let's move on to the next topic

Credit: Raimund Seidel, Understanding the Inverse Ackerman Function, EWCG `06 invited talk: http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf

Ackerman Values (Wikipedia)

Values of A(m, n)

m∖n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2
2	3	5	7	9	11	2n + 3
3	5	13	29	61	125	2 ^(n + 3) - 3
4	13	65533	2 ⁶⁶⁵³⁶ - 3	$2^{2^{65536}} - 3$	A(3, A(4, 3))	$\underbrace{2^{2^{\cdot^{\cdot^2}}}_{n+3}-3}_{n+3 \text{ twos}}$
5	65533	$2^{2^{2^{-2^2}}} - 3$ 65536 twos	A(4, A(5, 1))	A(4, A(5, 2))	A(4, A(5, 3))	A(4, A(5, n-1))
6	A(5, 1)	A(5, A(6, 0))	A(5, A(6, 1))	A(5, A(6, 2))	A(5, A(6, 3))	A(5, A(6, n-1))

But it's easier to understand log*(n)
log* x = number of times you need to compute log to bring value down to at most 1
E.g. log* 2 = 1

log* 4 = log* 2² = 2
log* 16 = log* 2^{2²} = 3
(log log log log 16 = 1)
log* 65536 = log* 2^{2²²} = 4
(log log log log 65536 = 1)
log* 2⁶⁵⁵³⁶ = = 5

