CSE 326: Data Structures Disjoint Sets – Union/Find

Hal Perkins Winter 2008 Lectures 19-21

1

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - $-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Required operations
 - Union merge two sets to create their union (original sets need not be preserved)
 - Find determine which set a given item appears in (in particular, be able to quickly tell whether two items are in the same set)

2

Set Representation

- Maintain a set of pairwise disjoint sets.
 - $-\{3,5,7\}$, $\{4,2,8\}$, $\{9\}$, $\{1,6\}$
- Each set has a unique name, one of its members
 - $-\{3,\underline{5},7\},\{4,2,\underline{8}\},\{\underline{9}\},\{\underline{1},6\}$

3

Union

- Union(x,y) take the union of two sets named x and y
 - $-\{3,\underline{5},7\},\{4,2,\underline{8}\},\{\underline{9}\},\{\underline{1},6\}$
 - Union(5,1)
 - $\{3,\underline{5},7,1,6\},\ \{4,2,\underline{8}\},\ \{\underline{9}\},$

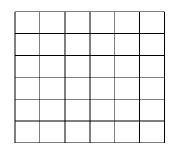
Find

- Find(x) return the name of the set containing x.
 - $-\{3,\underline{5},7,1,6\},\{4,2,\underline{8}\},\{\underline{9}\},$
 - $-\operatorname{Find}(1) = 5$
 - Find(4) = 8

5

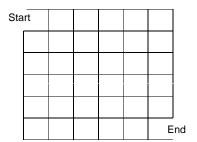
An Example: Building Mazes

• Build a random maze by erasing edges.



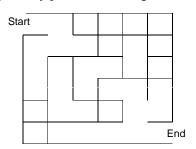
Building Mazes (2)

Pick Start and End



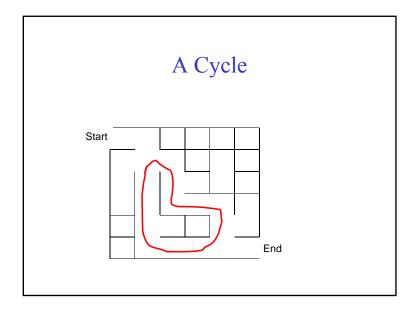
Building Mazes (3)

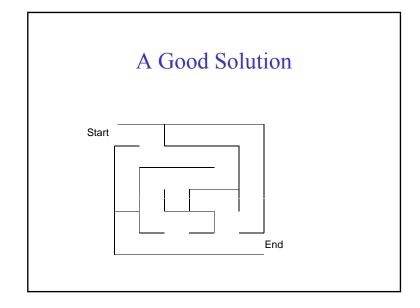
• Repeatedly pick random edges to delete.

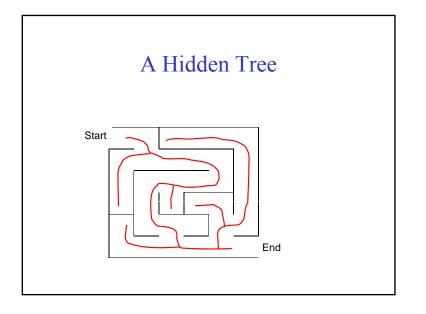


Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles no cell can reach itself by a path unless it retraces some part of the path.)







Number the Cells

We have disjoint sets $S = \{\{1\}, \{2\}, \{3\}, \{4\}, \dots \{36\}\}\}$ each cell is a set by itself. Also a set of all possible edges $E = \{(1,2), (1,7), (2,8), (2,3), \dots \}$ 60 edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges not yet examined
- Maze = set of maze edges (initially empty)

Example Step

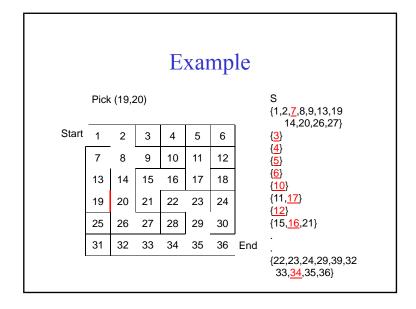
```
Start <sub>1</sub>
                        5
               3
          8
               9
                   10
                       11
                            12
                       17
                            18
     13
          14
              15
                   16
     19
          20
              21
                   22
                       23
                            24
                   28
     25
          26
              27
                       29
                            30
                  34 35 36 End
          32 33
```

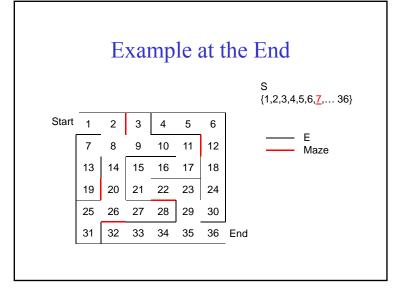
Pick (8,14)

```
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}
```

Example

```
S
{1,2,<u>7</u>,8,9,13,19}
                                                    {1,2,7,8,9,13,19,14,20,26,27}
                             Find(8) = 7
{<u>4</u>}
                             Find(14) = 20
                                                    {<u>4</u>}
{<u>5</u>}
                                                    {<u>5</u>}
{<u>6</u>}
                                                    {<u>6</u>}
                              Union(7,20)
{10}
                                                    {10}
{11,<u>17</u>}
                                                    {11,<u>17</u>}
{12}
                                                    {12}
{14,<del>20</del>,26,27}
                                                    {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                                    {22,23,24,29,39,32
{22,23,24,29,39,32
                                                     33,34,35,36}
 33,34,35,36}
```





Implementing the DS ADT

- *n* elements, Total Cost of: *m* finds, $\leq n$ -1 unions $\frac{can \text{ there be }}{more \text{ unions?}}$
- Target complexity: O(m+n)i.e. O(1) amortized
- *O*(1) worst-case for find as well as union would be great, but...

Known result: both find and union *cannot* be done in worst-case *O*(1) time

Attempt #1

- Hash elements to a hashtable
- Store set identifier for each element as data

runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

Attempt #2

- Hash elements to a hashtable
- Store set identifier for each element as data
- *Link* all elements in the same set together runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

Attempt #3

- Hash elements to a hashtable
- Store set identifier for each element as data
- *Link* all elements in the same set together
- Always update identifiers of smaller set

runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

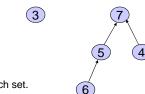
[Read section 8.2]

Up-Tree for Disjoint Union/Find

Initial state: 1

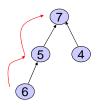
After several Unions:

Roots are the names of each set.



Find Operation

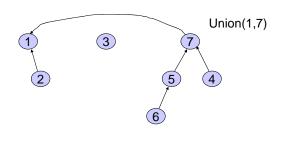
Find(x) - follow x to the root and return the root



Find(6) = 7

Union Operation

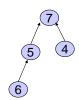
Union(x,y) - assuming x and y are roots, point y to x.



Simple Implementation

• Array of indices

Up[x] = 0 means x is a root.



Implementation

```
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```
void Union(int x, int y) {
  up[y] = x;
}
```

 $runtime\ for\ Union():$

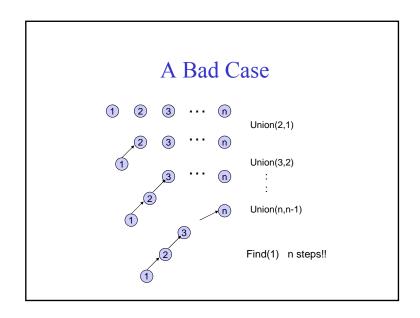
runtime for Find():

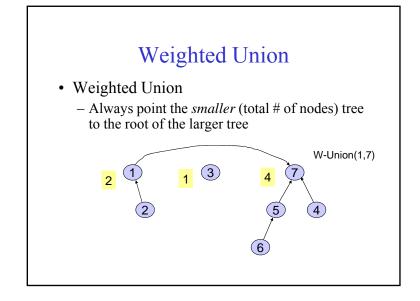
runtime for m Finds and n-1 Unions:

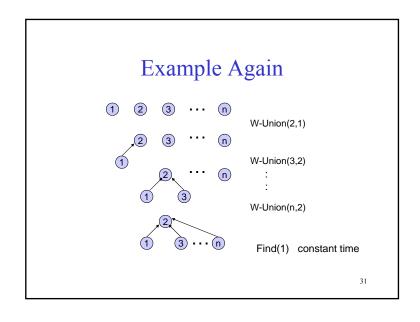
Now this doesn't look good ⊗

Can we do better? Yes!

- 1. Improve union so that *find* only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$
- 2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to $\underline{\text{almost}} \Theta(m+n)$







Analysis of Weighted Union

With weighted union an up-tree of height h has weight *at least* 2^h.

- · Proof by induction
 - **Basis**: h = 0. The up-tree has one node, $2^0 = 1$
 - **Inductive step**: Assume true for all h' < h.

Minimum weight up-tree of height h formed by weighted unions

 $W(T_1) \ge W(T_2) \ge 2^{h-1}$ Weighted Induction hypothesis

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$n \ge 2^h$$

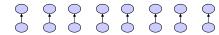
$$\log_2 n \ge h$$

- Find(x) in tree T takes O(log n) time.
 - Can we do better?

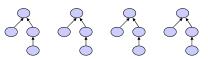
33

Worst Case for Weighted Union

n/2 Weighted Unions

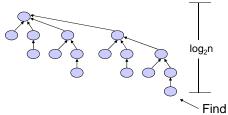


n/4 Weighted Unions



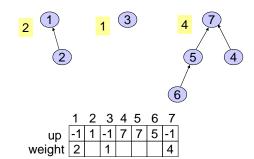
Example of Worst Cast (cont')

After n/2 + n/4 + ... + 1 Weighted Unions:



If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

Array Implementation



Weighted Union

```
W-Union(i,j : index){
    //i and j are roots
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi +wj;
}

new runtime for Union():
new runtime for Find():
runtime for m finds and n-1 unions =</pre>
```

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for a root, simply store -size

[Read section 8.4, page 276]

38

Union-by-size: Find Analysis

- Complexity of Find: O(max node depth)
- All nodes start at depth 0
- Node depth increases:
 - Only when it is part of smaller tree in a union
 - Only by one level at a time

Result: tree size doubles when node depth increases by 1

Find runtime = O(node depth) =

runtime for m finds and n-1 unions =

How about Union-by-height?

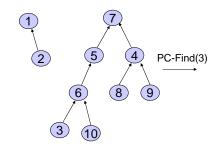
• Can still guarantee O(log *n*) worst case depth

Left as an exercise!

 Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

Path Compression

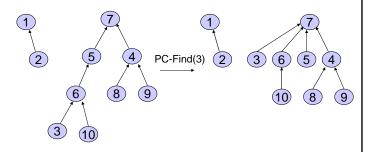
• On a Find operation point all the nodes on the search path directly to the root.



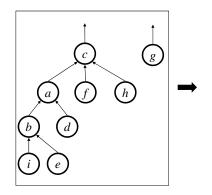
41

Path Compression

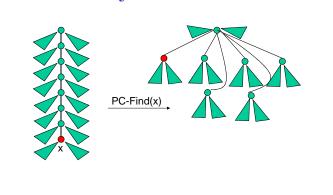
• On a Find operation point all the nodes on the search path directly to the root.



Draw the result of Find(e):



Self-Adjustment Works



Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ -1 do //find root//
        r := up[r];
    if i ≠ r then //compress path//
        k := up[i];
    while k ≠ r do
        up[i] := r;
        i := k;
        k := up[k]
    return(r)
}
```

45

Interlude: A Really Slow Function

```
Ackermann's function is a <u>really</u> big function A(x, y) with inverse \alpha(x, y) which is <u>really</u> small
```

```
\begin{array}{ccc} & n{+}1 & & \text{if } m=0 \\ A(m{,}n) = & A(m{-}1{,}1) & & \text{if } m>0 \text{ and } n=0 \\ & A(m{-}1{,}\,A(m{,}n{-}1) & & \text{if } m>0 \text{ and } n>0 \end{array}
```

How fast does $\alpha(x, y)$ grow?

 $\alpha(x, y) = 4$ for x **far** larger than the number of atoms in the universe (2³⁰⁰)

α shows up in:

- Computational complexity
- Computation Geometry (surface complexity)
- Combinatorics of sequences

46

A More Comprehensible Slow Function

log* x = number of times you need to compute log to bring value down to at most 1

```
E.g. \log^* 2 = 1

\log^* 4 = \log^* 2^2 = 2

\log^* 16 = \log^* 2^{2^2} = 3 (log \log \log 16 = 1)

\log^* 65536 = \log^* 2^{2^2} = 4 (log \log \log \log 65536 = 1)

\log^* 2^{65536} = \dots = 5
```

Take this: $\alpha(m,n)$ grows even slower than $\log^* n$!!

47

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For *all practical purposes* this is amortized constant time: $O(p \cdot 4)$ for p operations!

• Very complex analysis – worse than splay tree analysis etc. that we skipped!

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - Log * n < 7 for all reasonable n. Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

49

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.