
1

CSE 326: Data Structures
Sorting

Hal Perkins
Wi 2008

1

Winter 2008
Lecture 17-18

Sorting: The Big Picture
Given n comparable elements in an array, sort
th i i i (d i) dthem in an increasing (or decreasing) order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

2

Insertion sort
Selection sort
Bubble sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Insertion Sort: Idea

• At the kth step put the kth input element in• At the kth step, put the kth input element in
the correct place among the first k elements

• Result: After the kth step, the first k elements
are sorted.

Runtime:

3

Runtime:
worst case :
best case :
average case :

Selection Sort: idea

• Find the smallest element put it 1st• Find the smallest element, put it 1st

• Find the next smallest element, put it 2nd

• Find the next smallest, put it 3rd

• And so on …

4

2

Selection Sort: Code
void SelectionSort (Array a[0..n-1]) {

for (i=0, i<n; ++i) {
j = Find index of smallest entry in a[i..n-1]
Swap(a[i],a[j])

}

}

5

Runtime:
worst case :
best case :
average case :

HeapSort:
Using Priority Queue ADT (heap)

75623 44
87
756

27
18

801
35

13
23 44

8 13 18 23 27

Shove all elements into a priority queue

6

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

Merge Sort MergeSort (Array [1..n])
1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge (a1[1..n],a2[1..n])
i1=1, i2=1
While (i1<n, i2<n) {

if (a1[i1] < a2[i2]) {
Next is a1[i1]
i1++

7

} else {
Next is a2[i2]
i2++

}
}
Now throw in the dregs…

“The 2-pointer method”

Merge Sort: Complexity

8

3

The steps of QuickSort
81 43 31 57S select pivot value

13
92

43

65 26

75
0

13 8192

43 65
31

5726

750S1 S2 partition S

S1 S2
QuickSort(S1) and

QuickSort(S)

9

13 4331 57260

S1
81 927565

S2 QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted
[Weiss]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

QuickSort Example

8 1 4 9 0 3 5 2 7 6

0 1 4 9 7 3 5 2 6 8

i j

10

•Choose the pivot as the median of three.

•Place the pivot and the largest at the right
and the smallest at the left

QuickSort Example
0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

i j

11

0 1 4 2 7 3 5 9 6 8

•Move i to the right to be larger than pivot.
•Move j to the left to be smaller than pivot.
•Swap

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

QuickSort Example

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij

0 1 4 2 5 3 7 9 6 8

i j

12

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

4

Recursive Quicksort
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

13

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable (or 6 or…).

QuickSort:
Best case complexity

14

QuickSort:
Worst case complexity

15

QuickSort:
Average case complexity

Turns out to be O(n log n)

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.

16

5

Features of Sorting Algorithms

• In place• In-place
– Sorted items occupy the same space as the

original items. (No copying required, only O(1)
extra space if any.)

• Stable

17

– Items in input with the same value end up in the
same order as when they began.

Sort Properties

Are the following: stable? in-place?
I ti S t? N Y C B N YInsertion Sort? No Yes Can Be No Yes
Selection Sort? No Yes Can Be No Yes
MergeSort? No Yes Can Be No Yes
QuickSort? No Yes Can Be No Yes

18

How fast can we sort?

• Heapsort Mergesort and Quicksort all run• Heapsort, Mergesort, and Quicksort all run
in O(N log N) best case running time

• Can we do any better?
• No, if the basic action is a comparison.

19

Sorting Model

• Recall our basic assumption: we can only compare• Recall our basic assumption: we can only compare
two elements at a time
– we can only reduce the possible solution space by half

each time we make a comparison

• Suppose you are given N elements
– Assume no duplicates

20

p
• How many possible orderings can you get?

– Example: a, b, c (N = 3)

6

Permutations

• How many possible orderings can you get?y p g y g
– Example: a, b, c (N = 3)
– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
– 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)
– All the possible permutations of a set of 3 elements

• For N elements

21

– N choices for the first position, (N-1) choices for the
second position, …, (2) choices, 1 choice

– N(N-1)(N-2)L(2)(1)= N! possible orderings

Decision Tree
a < b < c, b < c < a,
c < a < b a < c < bc < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c c < a < b b < c < a c < b < a

a < b a > b

a > ca < c b < c b > c

22

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
c b a

b < c < a b < a < c

b < c b > c c < a c > a

The leaves contain all the possible orderings of a, b, c

Lower bound on Height
• A binary tree of height h has at most how many leaves?

L
• A binary tree with L leaves has height at least:

h
• The decision tree has how many leaves:

23

The decision tree has how many leaves:

• So the decision tree has height:

h

log(N!) is Ω(NlogN)

())1()2()2()1(log)!log(NNNN ⋅⋅⋅= L()

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log
)1()2()2()1(log)!log(

NN

NNNN

NNN
NNNN

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

L

L

L

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

24

)log(
2

log
2

)2log(log
2

NN

NNNNN

Ω=

−=−≥

7

Ω(N log N)
• Run time of any comparison-based sorting y p g

algorithm is Ω(N log N)
• Can we do better if we don’t use comparisons?

25

BucketSort (aka BinSort)
If all values to be sorted are known to be between 1
and K, create an array count of size K, increment
counts while traversing the input and finally outputcounts while traversing the input, and finally output
the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array
1

26

2
3
4
5

Running time to sort n items?

BucketSort Complexity: O(n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is constant but large (e.g. 232)

27

– ???

Fixing impracticality: RadixSort

• Radix = “The base of a number system”• Radix = The base of a number system
– We’ll use 10 for convenience, but could be

anything
• Idea: BucketSort on each digit,

least significant to most significant

28

(lsd to msd)

8

Bucket sort
by 1’s digit

Input data

Radix Sort Example (1st pass)

After 1st pass

67
123

38
3

721
9

537
478

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

721
3

123
537

67
478

38
9

29

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

Bucket sort
by 10’s

Radix Sort Example (2nd pass)

After 1st pass After 2nd passby 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1 pass After 2 pass
3
9

721
123
537

38
67

478

30

Bucket sort

Radix Sort Example (3rd pass)

After 2nd pass After 3rd passby 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

After 2 pass
3
9

721
123
537

38
67

478

After 3 pass
3
9

38
67

123
478
537
721

31

Invariant: after k passes the low order k digits are sorted.

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

32
0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

9

Radixsort: Complexity
• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

33

• In practice
– RadixSort only good for large number of elements with

relatively small values
– Hard on the cache compared to MergeSort/QuickSort

Internal versus External Sorting
• Need sorting algorithms that minimize disk/tape

access timeaccess time
• External sorting – Basic Idea:

– Load chunk of data into RAM, sort, store this “run” on
disk/tape

– Use the Merge routine from Mergesort to merge runs

34

– Repeat until you have only one run (one sorted chunk)
– Text gives some examples

(also see CSE 444)

