CSE 326: Data Structures Sorting

Hal Perkins
Winter 2008
Lecture 17-18

Insertion Sort: Idea

- At the $k^{\text {th }}$ step, put the $k^{\text {th }}$ input element in the correct place among the first k elements
- Result: After the $k^{\text {th }}$ step, the first k elements are sorted.

Runtime:

worst case

best case
average case

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing (or decreasing) order.

$\left.$| Simple
 algorithms:
 $\mathrm{O}\left(n^{2}\right)$ | Fancier
 algorithms:
 $\mathrm{O}(n \log n)$ | Comparison
 lower bound:
 $\Omega(n \log n)$ | Specialized
 algorithms:
 $\mathrm{O}(n)$ |
| :---: | :---: | :---: | :---: | | Handling |
| :---: |
| huge data |
| sets | \right\rvert\,

Selection Sort: idea

- Find the smallest element, put it $1^{\text {st }}$
- Find the next smallest element, put it $2^{\text {nd }}$
- Find the next smallest, put it $3^{\text {rd }}$
- And so on ...

HeapSort:

Using Priority Queue ADT (heap)

$$
\begin{array}{ccc}
23 & 44 & 87 \\
13 & 18 & \\
& 801 & \\
& 27
\end{array}
$$

35

$8 \quad 13$
27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

Merge Sort: Complexity

The steps of QuickSort

QuickSort Example

-Choose the pivot as the median of three.
-Place the pivot and the largest at the right and the smallest at the left

- Move i to the right to be larger than pivot. - Move j to the left to be smaller than pivot.
-Swap

QuickSort Example

\bullet	1	4	2	5	3	7	9	6	8

12

Recursive Quicksort

Best case complexity

Quicksort(A[]: integer array, left,right : integer): \{ pivotindex : integer:
if left + CuTOFF \leq right then
pivot := median3(A, left, right)
pivotindex := Partition(A,left, right-1, pivot); Quicksort(A, left, pivotindex - 1):
Quicksort(A, pivotindex + 1, right);
lse
Insertionsort(A, left, right);
\}

Don't use quicksort for small arrays CUTOFF = 10 is reasonable (or 6 or...).

QuickSort:
 Worst case complexity

QuickSort:
 Average case complexity

Turns out to be $\mathrm{O}(n \log n)$
See Section 7.7.5 for an idea of the proof.
Don't need to know proof details for this course.

Features of Sorting Algorithms

- In-place
- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)
- Stable
- Items in input with the same value end up in the same order as when they began.

Sort Properties

Are the following:	stable?		in-place?		
Insertion Sort?	No	Yes	Can Be	No	Yes
Selection Sort?	No	Yes	Can Be	No	Yes
MergeSort?	No	Yes	Can Be	No	Yes
QuickSort?	No	Yes	Can Be	No	Yes

in-place?

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
- we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
- Assume no duplicates
- How many possible orderings can you get?
- Example: a, b, c ($\mathrm{N}=3$)

Permutations

- How many possible orderings can you get?
- Example: a, b, c ($\mathrm{N}=3$)
- (a b c), (a c b), (bac), (b c a), (c a b), (c ba)
-6 orderings $=3 \cdot 2 \cdot 1=3$! (ie, "3 factorial")
- All the possible permutations of a set of 3 elements
- For N elements
- N choices for the first position, ($\mathrm{N}-1$) choices for the second position, ..., (2) choices, 1 choice
$-\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}$! possible orderings

Lower bound on Height

- A binary tree of height h has at most how many leaves?

L \square \square

- A binary tree with L leaves has height at least:
h \square
\square
- The decision tree has how many leaves: \square
- So the decision tree has height:
h \square

Decision Tree

$\log (N!)$ is $\Omega(N \log N)$

$$
\begin{aligned}
& \log (N!)=\log (N \cdot(N-1) \cdot(N-2) \cdots(2) \cdot(1)) \\
& \underset{\text { select just the }}{ }=\log N+\log (N-1)+\log (N-2)+\cdots+\log 2+\log 1 \\
& \text { firist } \mathrm{N} / 2 \text { terms } \\
& \underbrace{\overbrace{0}} \geq \log N+\log (N-1)+\log (N-2)+\cdots+\log \frac{N}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{N}{2}(\log N-\log 2)=\frac{N}{2} \log N-\frac{N}{2} \\
& =\Omega(N \log N)
\end{aligned}
$$

$\Omega(\mathrm{N} \log \mathrm{N})$

- Run time of any comparison-based sorting algorithm is $\Omega(\mathbf{N} \log \mathbf{N})$
- Can we do better if we don't use comparisons?

BucketSort Complexity: $\mathrm{O}(n+K)$

- Case $1: K$ is a constant
- BinSort is linear time
- Case 2: K is variable
- Not simply linear time
- Case 3: K is constant but large (e.g. 2^{32})
- ???

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$
count array

Running time to sort n items?

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit,
least significant to most significant (lsd to msd)

Radix Sort Example (2 ${ }^{\text {nd }}$ pass)

Radixsort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
- RadixSort only good for large number of elements with relatively small values
- Hard on the cache compared to MergeSort/QuickSort ${ }^{33}$

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples
(also see CSE 444)

