

Sorting: *The Big Picture*

Given *n* comparable elements in an array, sort them in an increasing (or decreasing) order.

Insertion Sort: Idea • At the k^{th} step, put the k^{th} input element in the correct place among the first k elements • Result: After the k^{th} step, the first k elements are sorted. Runtime: worst case best case ÷ average case :

3

14

16

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don't need to know proof details for this course.

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

17

19

Sort Properties

Are the following:	stable?			in-place?		
Insertion Sort?	No	Yes	Can Be	No	Yes	
Selection Sort?	No	Yes	Can Be	No	Yes	
MergeSort?	No	Yes	Can Be	No	Yes	
QuickSort?	No	Yes	Can Be	No	Yes	

18

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) <u>best</u> case running time
- Can we do any better?
- No, if the basic action is a comparison.

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is **Ω**(**N** log **N**)
- Can we do better if we don't use comparisons?

25

RadixSort • Input:126, 328, 636, 341, 416, 131, 328											
	0	1	2	3	4	5	6	7	8	9	
BucketSort on next-higher digit:											
	0	1	2	3	4	5	6	7	8	9	
BucketSort on msd:											
	0	1	2	3	4	5	6	7	8	9	

Radixsort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values
 - Hard on the cache compared to MergeSort/QuickSort³³

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples (also see CSE 444)