CSE 326: Data Structures

B-Trees

Hal Perkins
Winter 2008
Lecture 14-15

'_%
& &
& &

B-Trees

Weiss Sec. 4.7

SRAM
8KB - 4MB

CPU

(has registers)

Cache

DRAM
up to 10GB

Main Memory

many GB

Disk

TIme to access
(conservative)

1 ns per instruction

Cache

2-10 ns

Main Memory

40-100 ns

. a few
Disk milliseconds

(5-10 Million ns)
3

* BST

« AVL

« Splay

Trees so far

M-ary Search Tree
(_

» Maximum branching factor of M
» Complete tree has height =

disk accesses for find:

Runtime of find:

Solution: B-Trees

* specialized M-ary search trees

» Each node has (up to) M-1 keys:
— subtree between two keys x and y contains

leaves with values v such that
3[712]21
x<v<y [3] 712 T |

* Pick branching factor M
such that each node
takes one full
{page, block}
of memory

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
« All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

e The tree structure can be loaded into memory
irrespective of data object size

e Data actually resides on disk

B-Tree: Example

B-Tree withM = 4 (# pointers in internal node)

andL = 4 (# data items in leaf)
10[40
3 15[20[30 50
1]2 [Lo[11[12]] [20[25]26[| [aoa2] [|
AB|XG [3[5l6]9] [517] [| [30[32[33[36] [5ofeo[70]]

Data objects, that I’ll
ignore in slides

Note: All leaves at the same depth!

Example, Again

B-Tree Properties *
B-Tree withM = 4

— Data is stored at the leaves andl = 4
— All leaves are at the same depth and contains between
[L/2]and L data items
— Internal nodes store up to M-1 keys
— Internal nodes have between [M/2|and M children
— Root (special case) has between 2 and M children (or

[20[25]26] |

[1o[12]12]]
[30[32/33]36] [5060{70] |

root could be a leaf)
(3]5]6]9] tsf17] [|

10

(Only showing keys, but leaves also have data!)

9

These are technically B-Trees

B-trees vs. AVL trees B+ Trees in Practice
(From CSE 444)

» Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

- Depth of AVL Tree . Typic_al capacities:
- Height 4: 133* = 312,900,700 records
— Height 3: 1338 = 2,352,637 records
* Depth of B+ Tree with M =128, L = 64 « Can often hold top levels in buffer pool:
— Level1= 1page = 8 Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

Suppose we have 100 million items (100,000,000):

11

Building a B-Tree

[T [3]]
Insert(3) Insert(14)
The empty
B-Tree
M=3L=2

Now, Insert(1)?

13

v=st=2 Splitting the Root

M=3L=2
Overflowing leaves Too many
keys in a leaf!
14] |
Insert(59) Insert(26)

1,._

So, split the leaf.

14]59
And add
alze Bl] a new child

15

Too many
keys in a leaf!
Insert(1) {1 | Andcreate
a new root
So, split the leaf.
14
M=3L = " -
Propagating Splits
14]59
Insert(5) Add new

[14[26] 59] child

Split the leaf, but no space in parent!

Create a
new root

[1]3][5] | [14f26][59] | [1]3][5]][14[26] [59]]

So, split the node.

Insertion Algorithm

3. If an internal node ends up
with M+1 items, overflow!
— Split the node into two nodes:
« original with [(M+1)/2Titems
« new one withL(M+1)/2]items
— Add the new child to the parent
— If the parent ends up with M+1
items, overflow!

1. Insertthe key in its leaf

2. If the leaf ends up with L+1
items, overflow!
— Split the leaf into two nodes:
« original with [(L+1)/2Titems
 new one with L(L+1)/2]items
— Add the new child to the parent
— If the parent ends up with M+1
items, overflow!

4. Split an overflowed root in two
and hang the new nodes under

/ a new root

This makes the tree deeper!
17

M=3L=2

After More Routine Inserts

Insert(89)
Insert(79)

[1]3][5] | [14f26][59] |

[1]3][5] | [14]26][59]79][89[]

18

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

Delete(59)

[1]3][5] J[raf26][79] 89l |

[113][5]][14f26][59]79][89]]

What could go wrong?

19

Deletion and Adoption

A leaf has too few keys!

Delete(5)

[1]3][| J[14f26][79] g9l |

[1]3][5] J[1af26][79] g9l |

So, borrow from a sibling

20

Does Adoption Always Work?

» What if the sibling doesn’t have enough for you to
borrow from?

e.g. you have[L/2 -1 and sibling has [L/2?

21

Deletion and Merging

(1] I[3] J[aaf26][79] ol]

Delete(3)

A leaf has too few keys!

But now an internal node
has too few subtrees!

(1] [T J[aaf26][7e] ol]

And no sibling with surplus!

So, delete
the leaf

22

(1] |

[14]26][79]][89[]

w=31=2Deletion with Propagation
(More Adoption)

Adopt a
neighbor

[1]] [14]26][79]][89]]

23

A Bit More Adoption

(1] J[14[26] [79] sl |

Delete(1)

(adopt a
sibling)

[14] J[26] |[79]]9l |

24

M=3L .2
PU”mg out the ROOt A leaf has too few keys!

And no sibling with surplus!

Delete(26) So, delete
the leaf;
merge

[14] J[26[] [79] Jfe9l] [Lal J[[(7ol Ifol]
But now the root A node has too few subtrees

has just one subtree! and no neighbor with surplus!

Delete
the node

25

M=3L=2

Pulling out the Root (continued)

The root
has just one subtree!

Simply make
the one child
the new root!

79[89]

[14]] [79] ol |

26

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer

than[L/27items, underflow!

— Adopt data from a sibling;
update the parent

— If adopting won’t work, delete
node and merge with neighbor

— If the parent ends up with
fewer than [m/27 items,
underflow!

27

Deletion Slide Two

3. If an internal node ends up with
fewer than[M/27items, underflow!
— Adopt from a neighbor;
update the parent
— If adoption won’t work,
merge with neighbor
— If the parent ends up with fewer than
Mv/27items, underflow! This reduces the
height of the tree!

4./1f the root ends up with only one
child, make the child the new root
of the tree 2

Thinking about B-Trees

B-Tree insertion can cause (expensive) splitting and
propagation

B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare if M and L are large

(Why?)

IfM = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

29

Tree Names You Might Encounter

FYI:
— B-TreeswithM = 3,L = xare called 2-3 trees
* Nodes can have 2 or 3 keys
— B-TreeswithM = 4, L = xare called 2-3-4 trees
« Nodes can have 2, 3, or 4 keys

30

