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CSE 326: Data Structures
B-Trees

Hal Perkins
Winter 2008Winter 2008

Lecture 14-15

B-Trees

Weiss Sec. 4.7

CPU

(has registers)

Cache

TIme to access
(conservative)

SRAM

1 ns per instruction

Cache

Main Memory

2-10 ns

40-100 ns

SRAM

8KB - 4MB

DRAM

up to 10GB

Cache

Main Memory
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Disk a few 
milliseconds

(5-10 Million ns)
many GB

Disk

Trees so far

• BST

• AVL
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• Splay
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M-ary Search Tree

• Maximum branching factor of M
• Complete tree has height = 

# di k f fi d
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# disk accesses for find:

Runtime of find:

Solution: B-Trees
• specialized M-ary search trees

E h d h ( t ) M 1 k• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y 

• Pick branching factor M

3 7 12 21
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such that each node 
takes one full 
{page, block}
of memory

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
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y y
• The tree structure can be loaded into memory

irrespective of data object size
• Data actually resides on disk

B-Tree: Example
B-Tree with M = 4 (# pointers in internal node)
and L = 4 (# data items in leaf)

10 40
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1
AB
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xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

Note: All leaves at the same depth!Data objects, that I’ll 
ignore in slides
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B-Tree Properties ‡

– Data is stored at the leaves
All l t th d th d t i b t– All leaves are at the same depth and contains between 
⎡L/2⎤ and L data items

– Internal nodes store up to M-1 keys
– Internal nodes have between ⎡M/2⎤ and M children
– Root (special case) has between 2 and M children (or 
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root could be a leaf) 

‡These are technically B+-Trees

Example, Again

B-Tree with M = 4
and L = 4

10 40

3 15 20 30 50
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1 2

3 5 6 9
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15 17

20 25 26

30 32 33 36

40 42

50 60 70

(Only showing keys, but leaves also have data!)

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64
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B+ Trees in Practice
(From CSE 444)

• Typical order: 100.  Typical fill-factor: 67%.yp yp
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 =     2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 =           1 page  =     8 Kbytes
– Level 2 =      133 pages =     1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes       
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Building a B-Tree

The empty 
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)
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Now, Insert(1)?

Splitting the Root

Too many 
keys in a leaf!

M = 3 L = 2

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

So, split the leaf.

14

, p

Overflowing leaves

1414
14

Too many 
keys in a leaf!

M = 3 L = 2

Insert(59)
1 3 14 591 3 14

Insert(26)
1 3

14 26 59

So, split the leaf.

15

14 59

1 3 14 26 59

And add 
a new child

Propagating Splits

14 59
14 59

14 26 59Insert(5) Add new

M = 3 L = 2

1 3 14 26 59
14 26 59

1 3 5

5 14 59
14

child

Split the leaf, but no space in parent!
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5 14

14 26 591 3 5

59

5

1 3 5 14 26 59

59 Create a
new root

So, split the node.
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Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with L+1 

3. If an internal node ends up 
with M+1 items, overflow!

items, overflow!
– Split the leaf into two nodes:

• original with  ⎡(L+1)/2⎤ items
• new one with ⎣(L+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items overflow!

– Split the node into two nodes:
• original with  ⎡(M+1)/2⎤ items
• new one with ⎣(M+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!
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items, overflow!

4. Split an overflowed root in two 
and hang the new nodes under 
a new rootThis makes the tree deeper!

After More Routine Inserts
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M = 3 L = 2

5

1 3 5 14 26 59

59

14

Insert(89)
Insert(79)
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5

1 3 5 14 26 59 79

59 89

89

Deletion
1. Delete item from leaf
2. Update keys of ancestors if necessary

M = 3 L = 2

5

1 3 5 14 26 59 79

59 89

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

19

What could go wrong?

Deletion and Adoption

14

D l t (5)

14

A leaf has too few keys!

M = 3 L = 2

5

1 3 5 14 26 79

79 89

89

Delete(5)
?

1 3 14 26 79

79 89

89

14

So, borrow from a sibling
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3

1 3 3 14 26 79

79 89

14

89
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Does Adoption Always Work?

• What if the sibling doesn’t have enough for you to 
borrow from?

e.g. you have ⎡L/2⎤-1 and sibling has ⎡L/2⎤ ?
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Deletion and Merging

14

D l t (3)

14

A leaf has too few keys!

M = 3 L = 2

3

1 3 14 26 79

79 89

89

Delete(3)
?

1 14 26 79

79 89

89

And no sibling with surplus!

22
1 14 26 79

79 89

14

89

So, delete
the leaf

But now an internal node 
has too few subtrees!

Deletion with Propagation 
(More Adoption)

M = 3 L = 2

Adopt a
neighbor

1 14 26 79

79 89

14

89

14

1 14 26 79

89

79

89
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A Bit More Adoption
M = 3 L = 2

Delete(1)
(adopt a
sibling)

14

1 14 26 79

89

79

89

26

14 26 79

89

79

89

24

1 14 26 79 89 14 26 79 89
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Delete(26)
26 89

79

Pulling out the Root

89

79

A leaf has too few keys!
And no sibling with surplus!

So, delete 

M = 3 L = 2

26

14 26 79

89

89 14 79

89

89

the leaf;
merge

A node has too few subtrees 
and no neighbor with surplus!

But now the root
has just one subtree!

25
14 79

89

79

89

g p

14 79

79 89

89

Delete 
the node

j

Pulling out the Root (continued)
The root

has just one subtree!
Simply make

M = 3 L = 2

14 79

79 89

89

the one child
the new root!

26
14 79

79 89

89

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer 
than ⎡L/2⎤ items, underflow!
– Adopt data from a sibling; 

update the parent
If d i ’ k d l
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– If adopting won’t work, delete 
node and merge with neighbor

– If the parent ends up with 
fewer than ⎡M/2⎤ items, 
underflow!

Deletion Slide Two

3. If an internal node ends up with 
fewer than ⎡M/2⎤ items underflow!fewer than ⎡M/2⎤ items, underflow!
– Adopt from a neighbor;

update the parent
– If adoption won’t work,

merge with neighbor
– If the parent ends up with fewer than 

⎡ ⎤ i d fl !
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⎡M/2⎤ items, underflow!

4. If the root ends up with only one 
child, make the child the new root 
of the tree

This reduces the 
height of the tree!
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Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting and 
propagationp p g

• B-Tree deletion can cause (cheap) adoption or 
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large   
(Why?)

• If M = L = 128, then a B-Tree of height 4 will

29

If M  L  128, then a B Tree of height 4 will 
store at least 30,000,000 items

Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys
– B-Trees with M = 4, L = x are called 2-3-4 trees

• Nodes can have 2, 3, or 4 keys
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