
1

CSE 326: Data Structures
B-Trees

Hal Perkins
Winter 2008Winter 2008

Lecture 14-15

B-Trees

Weiss Sec. 4.7

CPU

(has registers)

Cache

TIme to access
(conservative)

SRAM

1 ns per instruction

Cache

Main Memory

2-10 ns

40-100 ns

SRAM

8KB - 4MB

DRAM

up to 10GB

Cache

Main Memory

3

Disk a few
milliseconds

(5-10 Million ns)
many GB

Disk

Trees so far

• BST

• AVL

4

• Splay

2

M-ary Search Tree

• Maximum branching factor of M
• Complete tree has height =

di k f fi d

5

disk accesses for find:

Runtime of find:

Solution: B-Trees
• specialized M-ary search trees

E h d h (t) M 1 k• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y

• Pick branching factor M

3 7 12 21

6

such that each node
takes one full
{page, block}
of memory

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

7

y y
• The tree structure can be loaded into memory

irrespective of data object size
• Data actually resides on disk

B-Tree: Example
B-Tree with M = 4 (# pointers in internal node)
and L = 4 (# data items in leaf)

10 40

3 15 20 30 50

8

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

Note: All leaves at the same depth!Data objects, that I’ll
ignore in slides

3

B-Tree Properties ‡

– Data is stored at the leaves
All l t th d th d t i b t– All leaves are at the same depth and contains between
⎡L/2⎤ and L data items

– Internal nodes store up to M-1 keys
– Internal nodes have between ⎡M/2⎤ and M children
– Root (special case) has between 2 and M children (or

9

root could be a leaf)

‡These are technically B+-Trees

Example, Again

B-Tree with M = 4
and L = 4

10 40

3 15 20 30 50

10

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

(Only showing keys, but leaves also have data!)

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64

11

B+ Trees in Practice
(From CSE 444)

• Typical order: 100. Typical fill-factor: 67%.yp yp
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

4

Building a B-Tree

The empty
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

13

Now, Insert(1)?

Splitting the Root

Too many
keys in a leaf!

M = 3 L = 2

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

So, split the leaf.

14

, p

Overflowing leaves

1414
14

Too many
keys in a leaf!

M = 3 L = 2

Insert(59)
1 3 14 591 3 14

Insert(26)
1 3

14 26 59

So, split the leaf.

15

14 59

1 3 14 26 59

And add
a new child

Propagating Splits

14 59
14 59

14 26 59Insert(5) Add new

M = 3 L = 2

1 3 14 26 59
14 26 59

1 3 5

5 14 59
14

child

Split the leaf, but no space in parent!

16

5 14

14 26 591 3 5

59

5

1 3 5 14 26 59

59 Create a
new root

So, split the node.

5

Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with L+1

3. If an internal node ends up
with M+1 items, overflow!

items, overflow!
– Split the leaf into two nodes:

• original with ⎡(L+1)/2⎤ items
• new one with ⎣(L+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items overflow!

– Split the node into two nodes:
• original with ⎡(M+1)/2⎤ items
• new one with ⎣(M+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

17

items, overflow!

4. Split an overflowed root in two
and hang the new nodes under
a new rootThis makes the tree deeper!

After More Routine Inserts

14

M = 3 L = 2

5

1 3 5 14 26 59

59

14

Insert(89)
Insert(79)

18

5

1 3 5 14 26 59 79

59 89

89

Deletion
1. Delete item from leaf
2. Update keys of ancestors if necessary

M = 3 L = 2

5

1 3 5 14 26 59 79

59 89

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

19

What could go wrong?

Deletion and Adoption

14

D l t (5)

14

A leaf has too few keys!

M = 3 L = 2

5

1 3 5 14 26 79

79 89

89

Delete(5)
?

1 3 14 26 79

79 89

89

14

So, borrow from a sibling

20

3

1 3 3 14 26 79

79 89

14

89

6

Does Adoption Always Work?

• What if the sibling doesn’t have enough for you to
borrow from?

e.g. you have ⎡L/2⎤-1 and sibling has ⎡L/2⎤ ?

21

Deletion and Merging

14

D l t (3)

14

A leaf has too few keys!

M = 3 L = 2

3

1 3 14 26 79

79 89

89

Delete(3)
?

1 14 26 79

79 89

89

And no sibling with surplus!

22
1 14 26 79

79 89

14

89

So, delete
the leaf

But now an internal node
has too few subtrees!

Deletion with Propagation
(More Adoption)

M = 3 L = 2

Adopt a
neighbor

1 14 26 79

79 89

14

89

14

1 14 26 79

89

79

89

23

A Bit More Adoption
M = 3 L = 2

Delete(1)
(adopt a
sibling)

14

1 14 26 79

89

79

89

26

14 26 79

89

79

89

24

1 14 26 79 89 14 26 79 89

7

Delete(26)
26 89

79

Pulling out the Root

89

79

A leaf has too few keys!
And no sibling with surplus!

So, delete

M = 3 L = 2

26

14 26 79

89

89 14 79

89

89

the leaf;
merge

A node has too few subtrees
and no neighbor with surplus!

But now the root
has just one subtree!

25
14 79

89

79

89

g p

14 79

79 89

89

Delete
the node

j

Pulling out the Root (continued)
The root

has just one subtree!
Simply make

M = 3 L = 2

14 79

79 89

89

the one child
the new root!

26
14 79

79 89

89

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than ⎡L/2⎤ items, underflow!
– Adopt data from a sibling;

update the parent
If d i ’ k d l

27

– If adopting won’t work, delete
node and merge with neighbor

– If the parent ends up with
fewer than ⎡M/2⎤ items,
underflow!

Deletion Slide Two

3. If an internal node ends up with
fewer than ⎡M/2⎤ items underflow!fewer than ⎡M/2⎤ items, underflow!
– Adopt from a neighbor;

update the parent
– If adoption won’t work,

merge with neighbor
– If the parent ends up with fewer than

⎡ ⎤ i d fl !

28

⎡M/2⎤ items, underflow!

4. If the root ends up with only one
child, make the child the new root
of the tree

This reduces the
height of the tree!

8

Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting and
propagationp p g

• B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large
(Why?)

• If M = L = 128, then a B-Tree of height 4 will

29

If M L 128, then a B Tree of height 4 will
store at least 30,000,000 items

Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys
– B-Trees with M = 4, L = x are called 2-3-4 trees

• Nodes can have 2, 3, or 4 keys

30

