

Trees so far

- BST
- AVL
- Splay

M-ary Search Tree

- Maximum branching factor of \boldsymbol{M}
- Complete tree has height $=$
\# disk accesses for find:

Runtime of find:

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node

- All brought to memory/cache in one access!

2. Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

- The tree structure can be loaded into memory irrespective of data object size
- Data actually resides on disk

Solution: B-Trees

- specialized M-ary search trees
- Each node has (up to) M-1 keys:
- subtree between two keys x and y contains leaves with values v such that $x \leq v<y$
- Pick branching factor M such that each node takes one full \{page, block\} of memory

B-Tree Properties ${ }^{\ddagger}$

- Data is stored at the leaves
- All leaves are at the same depth and contains between $\lceil L / 2\rceil$ and L data items
- Internal nodes store up to M-1 keys
- Internal nodes have between $\lceil M / 2\rceil$ and M children
- Root (special case) has between 2 and \boldsymbol{M} children (or root could be a leaf)

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

- Depth of AVL Tree
- Depth of $\mathrm{B}+$ Tree with $\mathrm{M}=128, \mathrm{~L}=64$

Example, Again

B-Tree with $\boldsymbol{M}=\mathbf{4}$
and $L=4$

(Only showing keys, but leaves also have data!)

B+ Trees in Practice (From CSE 444)

- Typical order: 100. Typical fill-factor: 67\%.
- average fanout $=133$
- Typical capacities:
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records
- Can often hold top levels in buffer pool:
- Level $1=1$ page $=8$ Kbytes
- Level $2=133$ pages $=1$ Mbyte
- Level 3 = 17,689 pages = 133 MBytes

Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with $\mathrm{L}+1$ items, overflow!

- Split the leaf into two nodes: - original with $\lceil(L+1) / 2]$ items
- new one with $L(L+\mathbf{1}) / \mathbf{2}\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\mathbf{M + 1}$ items, overflow!

If an internal node ends up with $\mathrm{M}+1$ items, overflow!

- Split the node into two nodes: - original with $\lceil(M+1) / 2\rceil$ items - new one with $L(M+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\mathbf{M + 1}$ items, overflow!

Split an overflowed root in two and hang the new nodes under a new root

$m=3 L=2 \quad$ Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

What could go wrong?

$\sqrt{m=3 L=2}$ After More Routine Inserts

Does Adoption Always Work?

- What if the sibling doesn't have enough for you to borrow from?
e.g. you have $\lceil L / 2\rceil-1$ and sibling has $\lceil L / 2\rceil$?

Deletion Algorithm

1. Remove the key from its leaf
2. If the leaf ends up with fewer than $\lceil\mathbf{L} / \mathbf{2}\rceil$ items, underflow!

- Adopt data from a sibling; update the parent
- If adopting won't work, delete node and merge with neighbor
- If the parent ends up with fewer than $\lceil M / \mathbf{2}\rceil$ items, underflow!

$m=3 L=2$
Pulling out the Root (continued)

The root
has just one subtree!

Deletion Slide Two

3. If an internal node ends up with fewer than $\lceil\mathbf{M} / \mathbf{2}\rceil$ items, underflow!

- Adopt from a neighbor; update the parent
- If adoption won't work, merge with neighbor
- If the parent ends up with fewer than $\lceil M / 2\rceil$ items, underflow!

This reduces the height of the tree!
4. If the root ends up with only one child, make the child the new root of the tree

Thinking about B-Trees

Tree Names You Might Encounter

- B-Tree insertion can cause (expensive) splitting and FYI: propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large (Why?)
- If $\boldsymbol{M}=\boldsymbol{L}=\mathbf{1 2 8}$, then a B-Tree of height 4 will store at least 30,000,000 items
- B-Trees with $\boldsymbol{M}=\mathbf{3 , L}=\mathbf{x}$ are called 2-3 trees
- Nodes can have 2 or 3 keys
- B-Trees with $\boldsymbol{M}=\mathbf{4}, \boldsymbol{L}=\mathbf{x}$ are called 2-3-4 trees
- Nodes can have 2, 3, or 4 keys

