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CSE 326: Data Structures
Splay Trees

Hal Perkins
Wi 2008Winter 2008
Lecture 13

AVL Trees Revisited

• Balance condition:
For every node x,    -1 ≤ balance(x) ≤ 1

– Strong enough : Worst case depth is O(log n)
– Easy to maintain : one single or double rotation

• Guaranteed O(log n) running time for
– Find ?
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– Insert ?
– Delete ?
– buildTree ?

AVL Trees Revisited

• What extra info did we maintain in each node?

• Where were rotations performed?

• How did we locate this node?• How did we locate this node?

Other Possibilities?
• Could use different balance conditions, different ways to 

maintain balance, different guarantees on running time, …

• Why aren’t AVL trees perfect?

• Many other balanced BST data structures
– Red-Black trees
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ed ac ees
– AA trees
– Splay Trees
– 2-3 Trees
– B-Trees
– …
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Splay Trees

• Blind adjusting version of AVL trees
– Why worry about balances?  Just rotate anyway!

• Amortized time per operations is O(log n)
• Worst case time per operation is O(n)

– But guaranteed to happen rarely

Insert/Find always rotate node to the root!
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SAT/GRE Analogy question:
AVL is to Splay trees as ___________ is to __________

Recall: Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).y ( ( ))

• Worst case time per operation can still be large, say O(n)

• Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))
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Amortized complexity is   worst-case guarantee over
sequences of operations.

Average time per operation for any sequence is O(f(n))

Recall: Amortized Complexity

• Is amortized guarantee any weaker than worstcase?

• Is amortized guarantee any stronger than average case?

• Is average case guarantee good enough in practice?

I ti d t d h i ti ?• Is amortized guarantee good enough in practice?

The Splay Tree Idea
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17If you’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!
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1. Find or insert a node k
2. Splay k to the root using:

Find/Insert in Splay Trees

zig-zag, zig-zig, or plain old zig rotation

Why could this be good?? 

1 H l th t k
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1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single 
rotation until k becomes the root:  (see Section 4.5.1 for details)

r

q

E

p

F

ps

k

s

A
k

B C

D

r

D

q

E

F

C

A B

Splaying node k to the root:
Need to be careful!

What’s bad about this process?
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Splay: Zig-Zag*
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*Just like an… Which nodes improve depth?
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Splay: Zig-Zig*
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*Is this just two AVL single rotations in a row?

Special Case for Root: Zig
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Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)
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Still Splaying 6
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Finally…
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Another Splay: Find(4)
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Example Splayed Out
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But Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(log n) guarantee?
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Why Splaying Helps

• If a node n on the access path is at depth d before 
the splay, it’s at about depth d/2 after the splay

• Overall, nodes which are low on the access path 
tend to move closer to the root
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• Splaying gets amortized O(log n) performance. 
(Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
– Less storage per node, easier to code

• Often data that is accessed once, 
is soon accessed again!
– Splaying does implicit caching by bringing it to the root

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

– if node not found, splay what would have been its parent

What if we didn’t splay?
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Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?
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Splay Operations: Remove

find(k)

L R

k

L R
> k< k

delete k

Now what?

Join
Join(L, R): 

given two trees such that (stuff in L) < (stuff in R), merge them:

L

Splay on the maximum element in L, then attach R

L R R

Lsplay

max

Splay on the maximum element in L, then attach R

Does this work to join any two trees?

Delete Example
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Delete(4)

find(4) 61
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Splay Tree Summary

• All operations are in amortized O(log n) time

S l i b d d hi b b b• Splaying can be done top-down; this may be better because:
– only one pass
– no recursion or parent pointers necessary
– we didn’t cover top-down in class

• Splay trees are very effective search trees
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• Splay trees are very effective search trees
– Relatively simple
– No extra fields required
– Excellent locality properties: frequently accessed keys are cheap to 

find
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