
1

CSE 326: Data Structures
Splay Trees

Hal Perkins
Wi 2008Winter 2008
Lecture 13

AVL Trees Revisited

• Balance condition:
For every node x, -1 ≤ balance(x) ≤ 1

– Strong enough : Worst case depth is O(log n)
– Easy to maintain : one single or double rotation

• Guaranteed O(log n) running time for
– Find ?

2

– Insert ?
– Delete ?
– buildTree ?

AVL Trees Revisited

• What extra info did we maintain in each node?

• Where were rotations performed?

• How did we locate this node?• How did we locate this node?

Other Possibilities?
• Could use different balance conditions, different ways to

maintain balance, different guarantees on running time, …

• Why aren’t AVL trees perfect?

• Many other balanced BST data structures
– Red-Black trees

4

ed ac ees
– AA trees
– Splay Trees
– 2-3 Trees
– B-Trees
– …

2

Splay Trees

• Blind adjusting version of AVL trees
– Why worry about balances? Just rotate anyway!

• Amortized time per operations is O(log n)
• Worst case time per operation is O(n)

– But guaranteed to happen rarely

Insert/Find always rotate node to the root!

5

y

SAT/GRE Analogy question:
AVL is to Splay trees as ___________ is to __________

Recall: Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).y (())

• Worst case time per operation can still be large, say O(n)

• Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))

6

Amortized complexity is worst-case guarantee over
sequences of operations.

Average time per operation for any sequence is O(f(n))

Recall: Amortized Complexity

• Is amortized guarantee any weaker than worstcase?

• Is amortized guarantee any stronger than average case?

• Is average case guarantee good enough in practice?

I ti d t d h i ti ?• Is amortized guarantee good enough in practice?

The Splay Tree Idea

10

17If you’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

92

5

3

3

1. Find or insert a node k
2. Splay k to the root using:

Find/Insert in Splay Trees

zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1 H l th t k

9

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single
rotation until k becomes the root: (see Section 4.5.1 for details)

r

q

E

p

F

ps

k

s

A
k

B C

D

r

D

q

E

F

C

A B

Splaying node k to the root:
Need to be careful!

What’s bad about this process?

r

q

p

F ps

k

s

A
k

B C

D

E

r

D

q

E

F

C

A B

Splay: Zig-Zag*

g k

X
p

k
W Y

g

W

p

ZX

Y Z

*Just like an… Which nodes improve depth?

4

Splay: Zig-Zig*

k

p

g

p
Z

Y

X

g

W

W

X

Y

k

Z XWY Z

*Is this just two AVL single rotations in a row?

Special Case for Root: Zig
p

k

root k root

X

k

Y

Z

Z

p

Y

X

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)

1 1

2

3

4

Find(6)

2

3

6

?

15

5

6

5

4

Still Splaying 6

1 1

2

3

6

6

3

2 5

?

16

6

5

4

2 5

4

5

Finally…

1 6

6

3

2 5

1

3

2 5

?

17

2 5

4

2 5

4

Another Splay: Find(4)

6 6

Find(4)

1

3

2 5

1

4

3 5

?

2 5

4

3 5

2

Example Splayed Out

6 4

1

4

3 5

61

3 5

2

?

3 5

2

2

But Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(log n) guarantee?

20

6

Why Splaying Helps

• If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay

• Overall, nodes which are low on the access path
tend to move closer to the root

21

• Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
– Less storage per node, easier to code

• Often data that is accessed once,
is soon accessed again!
– Splaying does implicit caching by bringing it to the root

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

– if node not found, splay what would have been its parent

What if we didn’t splay?

23

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?

7

Splay Operations: Remove

find(k)

L R

k

L R
> k< k

delete k

Now what?

Join
Join(L, R):

given two trees such that (stuff in L) < (stuff in R), merge them:

L

Splay on the maximum element in L, then attach R

L R R

Lsplay

max

Splay on the maximum element in L, then attach R

Does this work to join any two trees?

Delete Example

91

6
Delete(4)

find(4) 61

4

1 9

6

4 7

2

()

9

7

2 2 7

Find max

22

1

9

6

7

1

9

6

7

Splay Tree Summary

• All operations are in amortized O(log n) time

S l i b d d hi b b b• Splaying can be done top-down; this may be better because:
– only one pass
– no recursion or parent pointers necessary
– we didn’t cover top-down in class

• Splay trees are very effective search trees

28

• Splay trees are very effective search trees
– Relatively simple
– No extra fields required
– Excellent locality properties: frequently accessed keys are cheap to

find

8

Splay D
G

F
A

B

D
C

E

Splay E

I

G
B

A
H

E
D

C
F

Splay E

B

I

H

C

A

C

D

G

F

E

