
1/28/2008

1

CSE 326: Data Structures
Binary Search Trees

Hal Perkins
Wi 2008

1/28/2008 1

Winter 2008
Lecture 10

Today’s Outline

• Quick Tree Review
• Binary Trees
• Dictionary ADT / Search ADT
• Binary Search Trees

R di W i h 4

1/28/2008 2

• Reading: Weiss ch. 4

Tree Calculations
Recall: height is max number

of edges from root to a leaf t

Find the height of the tree...

1/28/2008 3

runtime:

Tree Calculations Example

AHow high is this tree?

E

B

D F

C

G

IH

KJ L

M

L

N

1/28/2008

2

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order forA traversal is an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

+

*

2 4

5

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

(an expression tree)

Inorder Traversal

void traverse(BNode t){
if (t ! NULL)if (t != NULL)

traverse (t.left);
process t.element;
traverse (t.right);

}

1/28/2008 6

}

Binary Trees
• Binary tree is

– a root
left subtree (maybe empty) A– left subtree (maybe empty)

– right subtree (maybe empty)

• Representation:

A

B

D E

C

F
Data

1/28/2008 7

HG

JI

right
pointer

left
pointer

Binary Tree: Representation

A
right

pointer
left

pointer Apointerpointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

1/28/2008

3

Binary Tree: Special Cases

AA A A

B

D E

C

GF

A

B

D E

C

F

A

B

D E

C

GF

IH

Full Tree

Complete Tree Perfect Tree

Binary Tree: Some Numbers!
For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

1/28/2008

ADTs Seen So Far

• Stack
Push

• Priority Queue
– Insert– Push

– Pop

• Queue
– Enqueue
– Dequeue

Then there is decreaseKey…

Insert
– DeleteMin

1/28/2008 11

The Dictionary ADT

• Data:
– a set of

• perkins
Hal Perkins
OH: MW 3:40
CSE 360i t(ki)a set of

(key, value) pairs

• Operations:
– Insert (key, value)
– Find (key)

CSE 360

• tuite
Kathleen Tuite,
OH: W 10:30, F 12:00
CSE 220

• ray
R S i h

insert(perkins, ….)

find(tuite)
• tuite
Kathleen Tuite– Remove (key)

The Dictionary ADT is also
called the “Map ADT”

Ray Smith,
OH: T 2:30, F 12:00
CSE 220

Kathleen Tuite, …

1/28/2008

4

A Modest Few Uses

• Sets
• Dictionaries
• Networks : Router tables
• Operating systems : Page tables
• Compilers : Symbol tables

1/28/2008 13

Probably the most widely used ADT!

Implementations

• Unsorted Linked-list

insert deletefind

• Unsorted Linked-list

• Unsorted array

14

• Sorted array

Binary Search Tree Data Structure

8

• Structural property
– each node has ≤ 2 children
– result:

121062

115

8• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

15

4 14

13

7 9

all keys in right subtree larger
than root’s key

– result: easy to find any given key

• What must we know about what we store
in the tree??

Example and Counter-Example

5 8

1171

84

5

181062

115

8

7

3 4 20

21BINARY SEARCH TREES?

15

1/28/2008

5

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)

10
()
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)
return Find(key,

t i ht)

2092

155

307 17

1/28/2008 17

root.right);
else
return root;

}

7

Runtime:

Find in BST, Iterative

Node Find(Object key,
Node root) {

10
while (root != NULL &&

root.key != key) {
if (key < root.key)
root = root.left;

else
root = root.right;

2092

155

10

1/28/2008 18

}

return root;
}

307 17

Runtime:

Insert in BST

155

10
Insert(13)
Insert(8)

2092

155

307 17

Insert(8)
Insert(31)

I i h l

1/28/2008

Runtime:

Insertions happen only
at the leaves – easy!

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into

an initially empty BST.
Runtime depends on the order!

– in given order

– in reverse order

1/28/2008

– median first, then left median, right median, etc.

1/28/2008

6

Bonus: FindMin/FindMax

• Find minimum
10

• Find maximum
2092

155

10

1/28/2008

307 17

Deletion in BST

10

2092

155

307 17

1/28/2008 22

7

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting
nodes, just mark them as , j
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

2092

155

10

– extra memory for “deleted” flag
– many lazy deletions = slow finds
– some operations may have to be

modified (e.g., min and max)

2092

307 17

Non-lazy Deletion
• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed.

Then “fix” the tree so that it is still a binary searchThen fix the tree so that it is still a binary search
tree.

• Three cases:
– node has no children (leaf node)
– node has one child

node has two children

1/28/2008 24

– node has two children

1/28/2008

7

Non-lazy Deletion – The Leaf Case

10Delete(17)

2092

155

()

1/28/2008

307 17

Deletion – The One Child Case

10Delete(15)

2092

155

()

1/28/2008 26

307

Deletion – The Two Child Case
10

Delete(5)

3092

205

7

()

What can we replace 5 with?

Deletion – The Two Child Case
Idea: Replace the deleted node with a value

guaranteed to be between the two child subtrees

Options:
• succ from right subtree: findMin(t.right)
• pred from left subtree : findMax(t.left)

1/28/2008 28

Now delete the original node containing succ or pred
• Leaf or one child case – easy!

1/28/2008

8

Finally…

10

3092

2077 replaces 5

Original node containing
7 gets deleted

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

30

Solution: Require a Balance Condition that
1. ensures depth is O(log n) – strong enough!
2. is easy to maintain – not too strong!

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

1/28/2008 31

have equal height

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal heighthave equal height

1/28/2008

9

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤ balance(x) ≤ 1, for every node x

• Ensures small depthp
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes
• Easy to maintain

– Using single and double rotations

The AVL Tree Data Structure

8

Structural properties
1. Binary tree property

121062

115

82. Balance property:
balance of every node is
between -1 and 1

Result:
Worst case depth is

O(log n)

1/28/2008

4 14137 9

(g)

Ordering property
– Same as for BST 15

1171

84

6

5

3

1171

84

6

5

3

1171

2

5

Proving Shallowness Bound
Let S(h) be the min # of nodes in an
AVL tree of height h

AVL tree of height h=4
with the min # of nodes

121062

115

8Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = O(2h)
(like Fibonacci numbers)

121062

14137 9

15

1/28/2008

10

Testing the Balance Property

10 We need to be able to:

2092

155
1.

2.

3.

30177

NULLs have
height -1

An AVL Tree

10
3 10

3
data

h i ht

20

92 15

5

10

30
0 011

2 2

3 height

children

177
0 0

