CSE 326: Data Structures Binary Search Trees

Hal Perkins
Winter 2008
Lecture 10

1/28/2008

Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...
runtime:

1/28/2008

3

Today’s Outline

- Quick Tree Review
- Binary Trees
- Dictionary ADT / Search ADT
- Binary Search Trees
- Reading: Weiss ch. 4

Tree Calculations Example

How high is this tree?

More Recursive Tree Calculations:

Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

Binary Trees

- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation:

Data	
left pointer	right pointer

1/28/2008

Inorder Traversal
void traverse(BNode t)\{ if (t != NULL) traverse (t.left); process t.element; traverse (t.right);
\}
\}

Binary Tree: Some Numbers!

For binary tree of height h :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:

1/28/2008

ADTs Seen So Far

- Stack
- Push
- Pop
- Queue
- Enqueue
- Dequeue

1/28/2008
11

The Dictionary ADT

- Data:
- a set of (key, value) pairs
- Operations:
- Insert (key, value)
- Find (key)
- Remove (key)

The Dictionary ADT is also
called the "Map ADT"

A Modest Few Uses

- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers
: Symbol tables

Probably the most widely used ADT!

1/28/2008

Binary Search Tree Data Structure

- Structural property
- each node has ≤ 2 children
- result:
- storage is small
- operations are simple
- average depth is small
- Order property
- all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- result: easy to find any given key

What must we know about what we store in the tree??

Example and Counter-Example

Implementations

insert find
 delete

- Unsorted Linked-list
- Unsorted array
- Sorted array

Find in BST, Iterative

\}
\}
Runtime:
1/28/2008
18

BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8,9 are inserted into an initially empty BST.

Runtime depends on the order!

- in given order
- in reverse order
- median first, then left median, right median, etc.

1/28/2008

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

1/28/2008

Deletion in BST

Why might deletion be harder than insertion?

1/28/2008

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Non-lazy Deletion - The Leaf Case

Delete(17)

1/28/2008
1/28/2008

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

1/28/2008

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $\mathrm{O}(\log n)$
- Worst case height is $\mathrm{O}(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $O(\log n) \quad-$ strong enough!
2. is easy to maintain

- not too strong!

Potential Balance Conditions

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

The AVL Balance Condition

Left and right subtrees of every node have equal heights differing by at most 1

Define: balance $(x)=$ height($x . l e f t$) - height($(x . r i g h t)$
AVL property: $\mathbf{- 1} \leq \operatorname{balance}(x) \leq 1$, for every node x

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\mathrm{O}\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
Worst case depth is O($\log n$)

Ordering property

- Same as for BST

1/28/2008

