
1

CSE 326: Data StructuresCSE 326: Data Structures

Java Generics & Containers

Hal PerkinsHal Perkins
Winter 2008
Lecture86

References
• Textbook (Weiss), sec. 1.5.3
• Sun online Java tutorial

java.sun.com/docs/books/tutorial/extra/generics/index.html

• For the truly hard-core:
Java Generics and Collections, Maurice Naftalin & Philip

Wadler, O’Reilly, 2006
The Java Programming Language, 4th ed., Arnold,

G li & H l A W 2006Gosling & Holmes, A-W, 2006

• And for the Language Lawyers in the crowd:
The Java Language Specification, 3rd ed., Gosling, Joy,

Steele & Bracha, A-W, 2005
1/25/2008 2

Type-Safe Containers
• Idea – a class or interface can have a type

parameter:
public class Bag<E> {

private E item;
public void setItem(E x) { item = x; }
public E getItem() { return item; }

}
• Given such a type, we can create & use instances:Given such a type, we can create & use instances:

Bag<String> b = new Bag<String>();
b.setItem(“How about that?”);
String contents = b.getItem();

1/25/2008 06b-3

Why?
• Main advantage is compile-time type checking:

– Ensure at compile time that items put in a generic
container have the right type

– No need for a cast to check the types of items returned;
guaranteed by type system

• Underneath, everything is a raw object, but we
don’t have to write the casts explicitly or worry
abo t t pe fail resabout type failures

1/25/2008 4

2

Specialized Containers
• Suppose we have a bunch of objects that can be

compared to each other, i.e. that implement this
interface:interface:

public interface Comparable<T> {
public int compareTo(T other);

}

• Example class of Comparable objects:

class OrderedBlob implements Comparable<OrderedBlob> {
…
public int compareTo(OrderedBlob b) { return 0, <0, >0 }

}

1/25/2008 5

Container for Comparable Things
• Suppose we want a container that only holds

objects that are Comparable. Here’s how:

interface SortedCollection <E extends Comparable<E>>

– E must be some type that “extends” (i.e., implements)
Comparable<E>

C T (E) i i l i– ∴ can use CompareTo(E) in implementation

– This isn’t quite general enough, but it’s in the right
direction

1/25/2008 6

Generics & Inheritance
• Next, suppose we have a small class hierarchy

interface Animal {
// return the name of this animal
public String getName();

}
public class Cow implements Animal { … }
public class Pig implements Animal { … }

1/25/2008 7

Animals as Parameters
• Task: Write a method that prints the names of all

animals in a list. Easy, right?
public void printNames(List<Animal> zoo) {…}

• Works fine if called with a List<Animal> object
• Type error if called with List<Cow> or List<Pig>!
• Why???

– Issue: List<Cow> is not a subtype of List<Animal>Issue: List<Cow> is not a subtype of List<Animal>
even though Cow is a subtype of Animal

– So printNames can only accept a list of Animal objects
(not what we want)

1/25/2008 8

3

Aside: Java Arrays
• The rules for generics and subtyping are different

from arrays:
– Cow[] is a subtype of Animal[]

• Historical accident, leads to some type errors that
can’t be detected until runtime

• Example: Is this always safe?
public void haveACow(Animal[] barnyard) {p ([] y) {

barnyard[0] = new Cow();
}

1/25/2008 9

Bounded Wildcards
• Idea: specify that the parameter can be a list of either

Animals or any of Animal’s subtypes
public void printNames (List<? extends Animal> zoo) {

for (Animal a: zoo) System.out.println(a.getName());
}

• Works great. This is a bounded wildcard. Any
List<t> works provided that t is Animal or some
subtype of Animalsubtype of Animal

• Animal is an upper bound for the wildcard
• Almost always what you want if a method argument

that you read from has a parameterized type
1/25/2008 10

Lower Bounds
• There is corresponding syntax for lower bounds:

public void haveACow(List<? super Cow> barnyard) {
barnyard.add(new Cow()); // OK

}
• This is also a wildcard type where Cow is a lower

bound. Actual argument can be List<Cow>,
List<Animal>, List<Object> or any other List
whose elements are supertypes of Cow.p yp
– But not List<Pig>

• Almost always what you want if a method stores
into an argument that has a parameterized type

1/25/2008 11

Constraints Revisited
• Recall the type declaration for collection of

Comparable objects:
interface SortedCollection <E extends Comparable<E>>

• Works, but is too restrictive. It requires that E
directly implement Comparable<E>, but that’s not
the only way two E objects can be Comparable.

• Solution:
interface SortedCollectioninterface SortedCollection

<E extends Comparable<? super E>>
– Can compare two elements of type E as long as E

extends Comparable<T> where T is any supertype of E

1/25/2008 12

4

Type Erasure
• Type parameters are a compile-time-only artifact. At

runtime, only the raw types are present
S i h il i l B E i j• So, at runtime, the compile-time class Bag<E> is just
a Bag (only one instance of class Bag), and everything
added or removed is just an Object, not a particular E
– Casts, etc. are inserted by compiler as needed, but

guaranteed to succeed if generics rules are obeyed
– Underlying code and JVM is pre-generics Java

• Ugly but necessary design decision• Ugly, but necessary design decision
– Makes it possible for new code that uses generics to

interoperate with old code that doesn’t
– Not how you would do it if you could start over

1/25/2008 13

Type Erasure Consequences
• Code in a class cannot depend on the actual value of a

type parameter at runtime. Examples of problems:
public class Bag<E> {

public static E makeE() { … } // error – what is E?
private E oneE; // OK
private E[] arrayE; // also OK
public void makeStuff() {

oneE = new E(); // error – new E() not allowed(); ()
arrayE = new E[]; // error – new E[] also not allowed

}
}

1/25/2008 14

But I Need to Make an E[]!!!!
• Various solutions. For simple case, we can use an

unchecked cast of an Object array (which is what
it ll i d th)it really is underneath anyway)

E[] stuff = (E[])new Object[size];
– All the other code that uses stuff[] and its elements will

work and typecheck just fine
• Be sure you understand the cause of all unchecked

cast warnings, & limit to “safe” situations like this
• More complex solutions if you want more type

safety or have more general requirements – see
references for detailed discussions

1/25/2008 15

Example with “Generic” Array
public class Bag<E> {

// instance variable
// methods
public void store(E item)

E[] items;

// constructor
public Bag() {

p ()
{ items[0] = item; }

public E get()
{ return items[0]; }

items = (E[]) new
Object[10];

}
|}

1/25/2008 16

