CSE 326: Data Structures Binomial Queues

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

Hal Perkins

Winter 2008
Lectures 8-9

1/24/2008
What's a forest?

What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property

Binomial Queue with n elements

- B_{h} has height h and exactly 2^{h} nodes
- B_{h} is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff.
- Hence the name; we will not use this last property
1/24/2008
B_{3}

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size ?

$$
\Rightarrow \text { deepest tree has height? }
$$

\Rightarrow number of trees is ?

Define: height(forest F) $=\max _{\text {tree } T \text { in }}\{\operatorname{height}(\mathrm{T})\}$
Binomial Q with \boldsymbol{n} nodes has height $\Theta(\log n)$

1/24/2008

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 0 to maxheight $\{$
a. $\quad m \leftarrow$ total number of B_{k} 's in the two BQs \qquad \# of 1's
b. if $\mathrm{m}=0$: continue; \qquad $0+0=0$
c. if $m=1$: continue; $1+0=1$
d. if $m=2$: combine the two B_{k} 's to form a $B_{k+1} \quad 1+1=0+c$
e. if $m=3: \quad \begin{aligned} & \text { retain one } B_{k} \text { and } \\ & \\ & \text { combine the other two to form a } B_{k+1}\end{aligned}$
\}

[^0] 7

Operations on Binomial Queue

- Will again define merge as the base operation - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

1/24/2008
6

Example: Binomial Queue Merge

H 2 :

1/24/2008
8

Example: Binomial Queue Merge
H1:
H2:

Example: Binomial Queue Merge

H1:

1/24/2008

Complexity of Merge

Constant time for each height
Max height is: $\log n$
\Rightarrow worst case running time $=\Theta(\quad)$

1/24/2008

deleteMin in Binomial Queue

Similar to leftist and skew heaps....
runtime
Worst case complexity: same as merge $\mathrm{O}(\quad)$

Average case complexity:
$\mathrm{O}(1)$
Why?? Hint: Think of adding 1 to 1101

1/24/2008

[^0]: Cla
 1/24/2008 has at most one tree of any height

