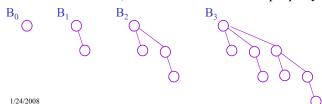
CSE 326: Data Structures Binomial Queues

Hal Perkins Winter 2008 Lectures 8-9

1/24/2008

The Binomial Tree, B_h

- B_h has height h and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly *h* children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 - Hence the name; we will *not* use this last property



Yet Another Data Structure: Binomial Queues

- Structural property
 - Forest of binomial <u>trees</u> with at most one tree of any height

What's a forest?

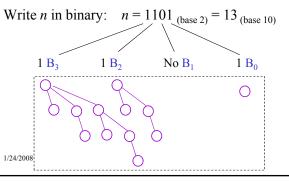
What's a binomial tree?

- Order property
 - Each binomial <u>tree</u> has the heap-order property

1/24/2008

Binomial Queue with n elements

Binomial Q with *n* elements has a *unique* structural representation in terms of binomial trees!



Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size ?
 - ⇒ deepest tree has height?
 - \Rightarrow number of trees is?

Define: height(forest F) = $\max_{\text{tree T in F}} \{ \text{ height(T)} \}$

Binomial Q with n nodes has height $\Theta(\log n)$

1/24/2008

Operations on Binomial Queue

- Will again define *merge* as the base operation
 insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

1/24/2008

6

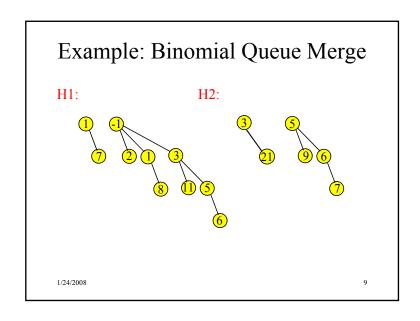
Merging Two Binomial Queues

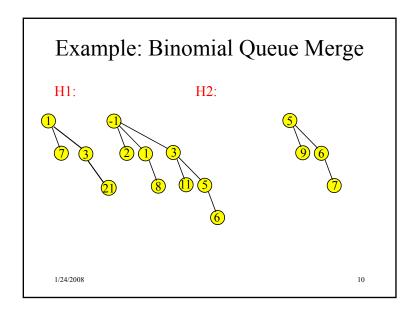
Essentially like adding two binary numbers!

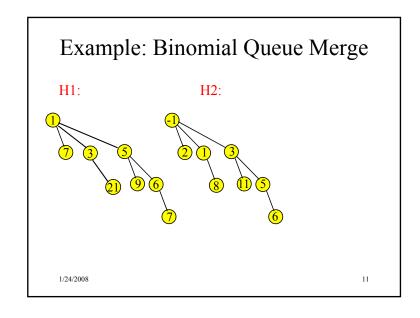
- 1. Combine the two forests
- 2. For k from 0 to maxheight {

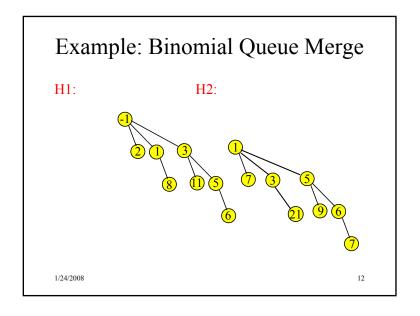
```
a. m \leftarrow \text{total number of } B_k's in the two BQs
b. if m=0: continue;
c. if m=1: continue;
d. if m=2: combine the two B_k's to form a B_{k+1}
e. if m=3: retain one B_k and combine the other two to form a B_{k+1}
```

Claim: When this process ends, the forest has at most one tree of any height









Example: Binomial Queue Merge H1: H2: 1/24/2008 13

Complexity of Merge

Constant time for each height Max height is: $\log n$

 \Rightarrow worst case running time = $\Theta($

1/24/2008

Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge O()

Average case complexity: O(1) Why?? *Hint: Think of adding 1 to 1101*

1/24/2008 15

deleteMin in Binomial Queue

Similar to leftist and skew heaps....

1/24/2008 16

