
1

CSE 326: Data StructuresCSE 326: Data Structures

Unit Testing - JUnit

Hal PerkinsHal Perkins
Winter 2008

Lecture 6

Testing & Debugging

• Testing Goals
– Verify that software behaves as expected
– Be able to recheck this as the software evolves

• Debugging
– A controlled experiment to discover what is wrong
– Strategies and questions:

• What’s wrong?
• What do we know is working? How far do we get before

something isn’t right?
• What changed?

– (Even if the changed code didn’t produce the bug, it’s fairly
likely that some interaction between the changed code and other
code did.)

1/18/2008 06a-2

Unit Tests

• Idea: create small tests that verify individual
properties or operations of objects
– Do constructors and methods do what they are

supposed to?
– Do variables and value-returning methods have the

expected values?
– Is the right output produced?

L t f ll it t t h f hi h t t• Lots of small unit tests, each of which test
something specific; not big, complicated tests
– If something breaks, the broken test should be a great

clue about where the problem is
1/18/2008 06a-3

Writing Tests

• When?

Before you write the code!!!

• Say what? Why would you do that?
– Helps you understand the problem and think about code

design and implementationdesign and implementation
– Gives you immediate feedback once the code is written

1/18/2008 06a-4

2

Where to put the tests?

• DrJava’s interactions window (or equivalent)
– Great way to prototype tests
– Way too tedious to do any extensive testing

• Main methods
– Either too many to do a thorough job, or
– Methods that test too much – hard to isolate problems

• Either way, someone has to check the outputy, p
• Better: automate this by writing self-checking tests

1/18/2008 06a-5

(Classic) JUnit

• Test framework for Java Unit tests
• Idea: implement classes that extend the JUnit

TestCase classTestCase class
• Each test in the class is named testXX (name

starting with “test” is the key)
• Each test performs some computation and then

checks the result
• Optional: setUp() method to initialize instance

i bl th i b f h t tvariables or otherwise prepare before each test
• Optional: tearDown() to clean up after each test

– Less commonly used than setUp()

1/18/2008 06a-6

Example

• Tests for a simple calculator object

i t j it f k T tCimport junit.framework.TestCase;
public class CalculatorTest extends TestCase {

public void testAddition() {
Calculator calc = new Calculator();
int expected = 7;
int actual = calc.add(3, 4);
assertEquals(“adding 3 and 4”, expected, actual);

}
…

}

1/18/2008 06a-7

Another Calculator Test

public void testDivisionByZero() {
Calculator calc = new Calculator();
try { // verify exception throwntry { // verify exception thrown

calc.divide(2, 0);
fail(“should have thrown an exception”);

} catch (ArithmeticException e) {
// do nothing – this is what we expect

}
}

1/18/2008 06a-8

3

What Kinds of Checks are Available

• Look in junit.framework.Assert (JavaDocs on
www.junit.org)

• Examples• Examples
• assertEquals(expected, actual); // works on any type except

// double; uses .equals() for objects
• assertEquals(messsage, expected, actual);

// all have variations with messages
• assertEquals(expected, actual, delta);

// for doubles to test “close enough”
• assertFalse(condition);
• assertTrue(condition);()
• assertNotNull(object);
• assertNull(object);
• fail();
• // and some others

1/18/2008 06a-9

setUp

• If the tests require some common initial setup, we can
write this once and it is automatically executed before
each test (i e each test starts with a fresh setUp)each test (i.e., each test starts with a fresh setUp)

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

private Calculator calc; // calculator object for tests
/** initialize: repeated before each test */
protected void setUp() {

calc = new Calculator();calc = new Calculator();
}

// tests as before, but without local declaration/initialization of calc

1/18/2008 06a-10

Summary

• Unit tests
– Verify correct operation of new code
– Repeated running of tests as code changes increases

confidence that changes don’t introduce bugs
• (or makes it much easier to track down problems that do occur)

– Tests become part of the project history/culture
• Write the tests before you write the code
• If you discover a bug you didn’t test for, add a testy g y ,
• A little up-front effort will pay off in much better

quality code and much less time tracking down
problems

1/18/2008 06a-11

