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CSE 326: Data Structures

Priority Queues 
Leftist Heaps & Skew Heaps

Hal Perkins
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Winter 2008
Lectures 6 & 7

Outline

• Announcements• Announcements
• Leftist Heaps & Skew Heaps

– Reading: Weiss, Ch. 6
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Announcements

• Written HW #1 due NOW• Written HW #1 – due NOW
• Written HW #2 – out today, due next Friday
• Project #2 Part A out now

– Can work in pairs; start figuring out who you’d 
like to work with or whether you want to go alone
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y g
– Report your choice by next Wednesday
– Part A due the following Wednesday

New Heap Operation: Merge

Given two heaps merge them into one heapGiven two heaps, merge them into one heap
– first attempt: insert each element of the smaller 

heap into the larger. 
runtime:
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– second attempt: concatenate binary heaps’ 
arrays and run buildHeap.
runtime:
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Leftist Heaps

Idea:Idea: 
Focus all heap maintenance work in one 
small part of the heap

Leftist heaps:
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Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
l( ) i di t t d d t ith 0 1 hild

Definition: Null Path Length

npl(x) = min distance to a descendant with 0 or 1 children 

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0 ??

?
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000

0?1Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
valuesvalues

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
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– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete? 
balanced?

Are These Leftist?
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Every subtree of a leftist 
tree is leftist!
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Right Path in a Leftist Tree is Short (#1)
Claim: The right path is as short as any in the tree.
Proof: (By contradiction)Proof: (By contradiction)

R

x

L
D

Pick a shorter path:   D1 < D2
Say it diverges from right path at x

npl(L) ≤ D1-1   because of the path of 
length D1-1 to null
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D2
D1

npl(R) ≥ D2-1   because every node on
right path is leftist

Leftist property at x violated!

Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has 

at least
2r 1 nodes2r-1 nodes.

Proof: (By induction)
Base case          : r=1. Tree has at least 21-1 = 1 node
Inductive step  : assume true for r’< r.   Prove for tree with right 

path at least r.
1. Right subtree: right path of r-1 nodes
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⇒ 2r-1-1 right subtree nodes (by induction)
2. Left subtree:   also right path of length at least r-1 (by previous 
slide) ⇒ 2r-1-1 left subtree nodes (by induction)

Total tree size: (2r-1-1) + (2r-1-1) + 1 = 2r-1

Why do we have the leftist property?

Because it guarantees that:Because it guarantees that:
• the right path is really short compared to 

the number of nodes in the tree
• A leftist tree of N nodes, has a right path of 

at most log (N+1) nodes
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Idea – perform all work on the right path

Merge two heaps (basic idea)

• Put the smaller root as the new root• Put the smaller root as the new root,
• Hang its left subtree on the left.
• Recursively merge its right subtree and the 

other tree.
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Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two (distinct) 
leftist heaps T1 and T2

a

L R

merge
T1

< b

a

L

merge
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L1 R1

b

L2 R2

T2

a < b L1

b

L2 R2

R1

Merge Continued
a a

L1 R’

R’ = Merge(R1, T2)

R’ L1

If npl(R’) > npl(L1)
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runtime:

Let’s do an example, but first…
Other Heap Operations

• insert ?

• deleteMin ?
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Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

pretend node is a size 1 leftist heap– pretend node is a size 1 leftist heap
– insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
d

merge

1/18/2008 16

– remove and return root
– merge left and right subtrees

merge
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Leftest Merge Example
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(special case)

Sewing Up the Example
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0 12

0 12

Done?

Finally… 
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Leftist Heaps: Summary

GoodGood
•
•

Bad
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Bad
•
•
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Random Definition:
Amortized Time

am·or·tized time:
R i ti li it lti f “ iti ff” iRunning time limit resulting from “writing off” expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time, 
amortized time per operation is O(log N)
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Difference from average time:

Skew Heaps
Problems with leftist heaps

– extra storage for npl
extra complexity/logic to maintain and check npl– extra complexity/logic to maintain and check npl 

– right side is “often” heavy and requires a switch
Solution: skew heaps

– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right path
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g y g g p
– amortized time for: merge, insert, deleteMin = O(log n)
– however, worst case time for all three = O(n)

Merging Two Skew Heaps

a

merge
T1 a

L1 R1

bT2

a < b L1

merge

b

R1
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L2 R2 L2 R2

Only one step per iteration, with children always switched

Example
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Skew Heap Code
void merge(heap1, heap2) {
case {

heap1 == NULL: return heap2;p p ;
heap2 == NULL: return heap1;
heap1.findMin() < heap2.findMin():

temp = heap1.right;
heap1.right = heap1.left;
heap1.left = merge(heap2, temp);
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return heap1;
otherwise:

return merge(heap2, heap1);
}

}

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!
• All operations rely on mergeAll operations rely on merge

⇒ worst case complexity of all ops = 
• Will do amortized analysis later in the course

(see chapter 11 if curious)
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• Result: M merges take time M log n

⇒ amortized complexity of all ops = 

Comparing Heaps
• Binary Heaps • Leftist Heaps

• d-Heaps • Skew Heaps
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Still scope for improvement!


