
1

CSE 326: Data Structures

Priority Queues
Leftist Heaps & Skew Heaps

Hal Perkins

1/18/2008 1

Winter 2008
Lectures 6 & 7

Outline

• Announcements• Announcements
• Leftist Heaps & Skew Heaps

– Reading: Weiss, Ch. 6

1/18/2008 2

Announcements

• Written HW #1 due NOW• Written HW #1 – due NOW
• Written HW #2 – out today, due next Friday
• Project #2 Part A out now

– Can work in pairs; start figuring out who you’d
like to work with or whether you want to go alone

1/18/2008 3

y g
– Report your choice by next Wednesday
– Part A due the following Wednesday

New Heap Operation: Merge

Given two heaps merge them into one heapGiven two heaps, merge them into one heap
– first attempt: insert each element of the smaller

heap into the larger.
runtime:

1/18/2008 4

– second attempt: concatenate binary heaps’
arrays and run buildHeap.
runtime:

2

Leftist Heaps

Idea:Idea:
Focus all heap maintenance work in one
small part of the heap

Leftist heaps:

1/18/2008 5

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
l() i di t t d d t ith 0 1 hild

Definition: Null Path Length

npl(x) = min distance to a descendant with 0 or 1 children

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0 ??

?

1/18/2008 6

000

0?1Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority
valuesvalues

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))

1/18/2008 7

– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete?
balanced?

Are These Leftist?

2 2 0

00

001

11

2

0

0

000

11

2

1

000

0

0

1

0 0

1/18/2008 8
0

0

0

Every subtree of a leftist
tree is leftist!

3

Right Path in a Leftist Tree is Short (#1)
Claim: The right path is as short as any in the tree.
Proof: (By contradiction)Proof: (By contradiction)

R

x

L
D

Pick a shorter path: D1 < D2
Say it diverges from right path at x

npl(L) ≤ D1-1 because of the path of
length D1-1 to null

1/18/2008 9

D2
D1

npl(R) ≥ D2-1 because every node on
right path is leftist

Leftist property at x violated!

Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has

at least
2r 1 nodes2r-1 nodes.

Proof: (By induction)
Base case : r=1. Tree has at least 21-1 = 1 node
Inductive step : assume true for r’< r. Prove for tree with right

path at least r.
1. Right subtree: right path of r-1 nodes

1/18/2008 10

⇒ 2r-1-1 right subtree nodes (by induction)
2. Left subtree: also right path of length at least r-1 (by previous
slide) ⇒ 2r-1-1 left subtree nodes (by induction)

Total tree size: (2r-1-1) + (2r-1-1) + 1 = 2r-1

Why do we have the leftist property?

Because it guarantees that:Because it guarantees that:
• the right path is really short compared to

the number of nodes in the tree
• A leftist tree of N nodes, has a right path of

at most log (N+1) nodes

1/18/2008 11

g ()

Idea – perform all work on the right path

Merge two heaps (basic idea)

• Put the smaller root as the new root• Put the smaller root as the new root,
• Hang its left subtree on the left.
• Recursively merge its right subtree and the

other tree.

1/18/2008 12

4

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap

containing all elements of the two (distinct)
leftist heaps T1 and T2

a

L R

merge
T1

< b

a

L

merge

1/18/2008 13

L1 R1

b

L2 R2

T2

a < b L1

b

L2 R2

R1

Merge Continued
a a

L1 R’

R’ = Merge(R1, T2)

R’ L1

If npl(R’) > npl(L1)

1/18/2008 14

runtime:

Let’s do an example, but first…
Other Heap Operations

• insert ?

• deleteMin ?

1/18/2008 15

Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

pretend node is a size 1 leftist heap– pretend node is a size 1 leftist heap
– insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
d

merge

1/18/2008 16

– remove and return root
– merge left and right subtrees

merge

5

Leftest Merge Example

1210

5
1

0 0

merge

7

3
?

0
1

merge
1210

87

3
1

0 0

0

7

14
0

1210

5

8

1

0 0

0

10

5
?

0 merge

12

8

0

0

1/18/2008 17

14

8

12

0

0

(special case)

Sewing Up the Example

3
?

3
?

3
1

8
010

5
?

0

7

3

14

0

0

8
0

0

10

5
1

0

7

3

14

0

0
8

12

0

0

10

5 1

0

7

3

14

0

0

1/18/2008 18

12
0 12

0 12

Done?

Finally…

8
0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

0
10

5 1

0

1/18/2008 19

12
0

12
0

Leftist Heaps: Summary

GoodGood
•
•

Bad

1/18/2008 20

Bad
•
•

6

Random Definition:
Amortized Time

am·or·tized time:
R i ti li it lti f “ iti ff” iRunning time limit resulting from “writing off” expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

1/18/2008 21

p p (g)

Difference from average time:

Skew Heaps
Problems with leftist heaps

– extra storage for npl
extra complexity/logic to maintain and check npl– extra complexity/logic to maintain and check npl

– right side is “often” heavy and requires a switch
Solution: skew heaps

– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right path

1/18/2008 22

g y g g p
– amortized time for: merge, insert, deleteMin = O(log n)
– however, worst case time for all three = O(n)

Merging Two Skew Heaps

a

merge
T1 a

L1 R1

bT2

a < b L1

merge

b

R1

1/18/2008 23

L2 R2 L2 R2

Only one step per iteration, with children always switched

Example

1210

5

merge

7

3

5

merge
7

3

51210

87

3

14

14
1210

5

8

1410

5

8

merge
12

3

1/18/2008 24

14
7

14108

5

12

7

Skew Heap Code
void merge(heap1, heap2) {
case {

heap1 == NULL: return heap2;p p ;
heap2 == NULL: return heap1;
heap1.findMin() < heap2.findMin():

temp = heap1.right;
heap1.right = heap1.left;
heap1.left = merge(heap2, temp);

1/18/2008 25

return heap1;
otherwise:

return merge(heap2, heap1);
}

}

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!
• All operations rely on mergeAll operations rely on merge

⇒ worst case complexity of all ops =
• Will do amortized analysis later in the course

(see chapter 11 if curious)

1/18/2008 26

• Result: M merges take time M log n

⇒ amortized complexity of all ops =

Comparing Heaps
• Binary Heaps • Leftist Heaps

• d-Heaps • Skew Heaps

1/18/2008 27
Still scope for improvement!

