
1

CSE 326: Data StructuresCSE 326: Data Structures

Priority Queues – Binary Heaps

Hal Perkins

1/14/2008 1

Hal Perkins
Winter 2008

Lectures 3 & 4

Outline

• Math/Big O short summary & review• Math/Big-O – short summary & review
• Priority Queues (Binary Min Heaps)

– Reading: Weiss, Ch. 6

1/14/2008 2

Simplifying Recurrences
Given a recursive equation for the running time,
can sometimes simplify it for analysis.

• For an upper-bound analysis, can optionally simplify
to something larger, e.g.

T(n) = T(floor(n/2)) + 1 to T(n) ≤ T(n/2) + 1

• For a lower bound analysis can optionally simplify to

1/14/2008 3

• For a lower-bound analysis, can optionally simplify to
something smaller, e.g.

T(n) = 2T(n/2 + 5) + 1 to T(n) ≥ 2T(n/2) + 1

The One Page Cheat Sheet
• Calculating series:

e.g.
• Solving recurrences:

e.g. T(n) = T(n/2) + 1
∑ +

=
n nni

2
)1(

1. Brute force (Section 1.2.3)
2. Induction (Section 1.2.5)
3. Memorize simple ones!

1. Expansion (example in class)
2. Induction (Section 1.2.5)
3. Telescoping (later…)

• General proofs (Section 1.2.5)

=i 1 2

1/14/2008 4

e.g. How many edges in a tree with n nodes?
1. Counterexample
2. Induction
3. Contradiction

2

Priority Queue ADT
• Checkout line at the supermarket ???
• Printer queues ???
• Driver’s licensing queues – DOL ???
• operations: insert, deleteMin

6 2

1/14/2008 5

insert deleteMin
15 23

12 18
45 3 7

Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert
– deleteMin
(also: create, destroy, is_empty)

1/14/2008 6

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority value
than y, x will be deleted before y

Applications of the Priority Q
• Select print jobs in order of decreasing length
• Forward packets on network routers in order of

urgency
• Select most frequent symbols for compression
• Sort numbers, picking minimum first

1/14/2008 7

• Anything greedy

Implementations of Priority Queue ADT
insert deleteMin

Unsorted list (Array)

U t d li t (Li k d Li t)Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

1/14/2008 8

y ()

3

Tree Review
A

root(T):

Tree T

E

B

D F

C

G

IH

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):

(F)

1/14/2008 9

IH

LJ MK N

ancestors(F):
descendents(G):
subtree(C):

More Tree Terminology
Adepth(T):

Tree T

E

B

D F

C

G

IH

height(G):

degree(B):

branching factor(T):

1/14/2008 10

IH

LJ MK N

Some More Tree Terminology
AT is binary if … Tree T

GFED

CB

T is n-ary if …

1/14/2008 11

JIH
T is complete if …

How deep is a complete tree with n nodes?

Brief interlude: Some Definitions:
A Perfect binary tree – A binary tree with all

leaf nodes at the same depth. All internal
nodes have 2 childrennodes have 2 children.

2592
215

11

16

height h
2h+1 – 1 nodes
2h – 1 non-leaves
2h leaves

1/14/2008 12

2592
307 101 3

16

13 19 22

4

Full Binary Tree

• A binary tree in which each node has• A binary tree in which each node has
exactly zero or two children.

• (also known as a proper binary tree)
• (we will use this later for Huffman trees)

1/14/2008 13

Binary Heap Properties

1 Structure Property1. Structure Property
2. Ordering Property

1/14/2008 14

Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is

completely filled, with the possible exception of
th b tt l l hi h i fill d l ft t i htthe bottom level, which is filled left to right.

Examples:

1/14/2008 15

Representing Complete
Binary Trees in an Array

A From node i:
1

GED
CB

J KH I

F

L

From node i:

left child:
right child:
parent:

7
2 3

4 5 6

98 10 11 12

1/14/2008 16

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

5

Why better than tree with pointers?

1/14/2008 17

Heap Order Property
Heap order property: For every non-root

node X, the value in the parent of X is less
th (l t) th l i Xthan (or equal to) the value in X.

8020

10

996040

8020

10

85

1/14/2008 18

1530
996040

50 700

85

not a heap

Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

85

1/14/2008 19

996040

50 700

85

65

Heap – Insert(val)

Basic Idea:Basic Idea:
1. Put val at “next” leaf position
2. Repeatedly exchange node with its parent

if needed

1/14/2008 20

6

Insert: percolate up

996040

8020

10

85 996040

50 700

85

65 15

8015

10

1/14/2008 21

992040

50 700

85

65 60

Insert pseudo/C++ Code (optimized)
void insert(Object o) {
assert(!isFull());
size++;

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

newPos =
percolateUp(size,o);

Heap[newPos] = o;
}

val < Heap[hole/2])
Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

1/14/2008 22(Java code in book)

Heap – Deletemin

Basic Idea:Basic Idea:
1. Remove root (that is always the min!)
2. Put “last” leaf node at root
3. Find smallest child of node
4 S ap node ith its smallest child if needed

1/14/2008 23

4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.

DeleteMin: percolate down

1520

10

996040

50 700

85

65

6520

15

1/14/2008 24

996040

6520

50 700

85

7

DeleteMin pseudo/C++ Code (Optimized)
Object deleteMin() {
assert(!isEmpty());
returnVal = Heap[1];

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;

size--;
newPos =
percolateDown(1,

Heap[size+1]);
Heap[newPos] =
Heap[size + 1];

left 2 hole;
right = left + 1;
if (right ≤ size &&

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {

1/14/2008 25

return returnVal;
}

Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

(Java code in book)

0 1 2 3 4 5 6 7 8

Insert: 16, 32, 4, 69, 105, 43, 2

1/14/2008 26

More Priority Queue Operations
• decreaseKey

gi en a pointer to an object in the q e e red ce its priorit al e– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

1/14/2008 27

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

More Heap Operations
decreaseKey(objPtr, amount): raise the priority of a

object, percolate up
increaseKey(objPtr amount): lower the priority of aincreaseKey(objPtr, amount): lower the priority of a

object, percolate down
remove(objPtr): remove a object, move to top, them

delete. 1) decreaseKey(objPtr, ∞)
2) deleteMin()

W R i i f ll f h

1/14/2008 28

Worst case Running time for all of these:
FindMax?
ExpandHeap – when heap fills, copy into new space.

8

More Priority Queue Operations
• Remove(objPtr)

given a pointer to an object in the queue– given a pointer to an object in the queue,
remove it

Solution: set priority to negative infinity,
percolate up to root and deleteMin

1/14/2008 29

• buildHeap
Naïve solution:
Running time:

Can we do better?

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

115

12

1/14/2008 30
27184

96103

Buildheap pseudocode

private void buildHeap() {
for (int i = currentSize/2; i > 0; i--)

percolateDown(i);
}

1/14/2008 31

runtime:

BuildHeap: Floyd’s Method

115

12

115

12

67184

92103

671084

9213

12 12

1/14/2008 32
1171084

9613

25

1171084

9653

21

9

Finally…
1

11710812

9654

23

1/14/2008 33

11710812

runtime:

Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:

1/14/2008 34

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

CPU

Cache

Cycles to access:

Cache

Memory

1/14/2008 35

Disk

1

A Solution: d-Heaps
• Each node has d children
• Still representable by

4

9654

23

8 1012

7

11

• Still representable by
array

• Good choices for d:
– (choose a power of two

for efficiency)
3 7 2 8 5 12 11 10 6 9112

1/14/2008 36

4– fit one set of children in a
cache line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 12 11 10 6 9112

10

Operations on d-Heap

• Insert : runtime =• Insert : runtime =

• deleteMin: runtime =

1/14/2008 37

Does this help insert or deleteMin more?

One More Operation

• Merge two heaps Ideas?• Merge two heaps. Ideas?

1/14/2008 38

