CSE 326: Data Structures

Asymptotic Analysis

Hal Perkins Winter 2008 Lectures 2 & 3

Office Hours, etc.

The plan so far...

Hal Perkins M 4-5, W 4:30-5:30 CSE 006 lab

Kathleen Tuite Wed and/or Fri afternoon?

Ray Smith Tue mid-day?

(Comments? Conflicts? Lab of TA consulting rooms?)

TODO:

Hand in info sheet

1/8/2008

Today's Outline

• Admin: Project 1

• Asymptotic analysis

1/8/2008

Project 1 – Sound Blaster!

2

Play your favorite song in reverse!

Aim:

Implement stack interface two different ways (array, linked list)

2. Use to reverse a sound file

Due: Wed, Jan. 16

Electronic: at 10 pm, Jan. 16 Hardcopy: in sections Thursday

1/8/2008 4

Comparing Two Algorithms

1/8/2008

Analysis of Algorithms

- Efficiency measure
 - how long the program runs time complexity
 - how much memory it uses
 space complexity
 - For today, we'll focus on time complexity only (Analysis of space, etc. is very similar)
- Analysis is in terms of the *problem size*
 - Size depends on problem being solved
 - Typical: size of data structure, magnitude of some numeric parameter, ...

1/8/2008

What we want

- Rough Estimate
- Ignores Details
- Characterize and compare algorithms independent of implementation details
 - (coding tricks, machine speed, compiler optimizations)

1/8/2008

Asymptotic Analysis

• Complexity as a function of input size *n*

$$T(n) = 4n + 5$$

$$T(n) = 0.5 \ n \log n - 2n + 7$$

$$T(n) = 2^n + n^3 + 3n$$

• What happens as n grows?

1/8/2008

Why Asymptotic Analysis?

- Most algorithms are fast for small *n*
 - Time difference too small to be noticeable
 - External things dominate (OS, disk I/O, ...)
- BUT *n* is often large in practice
 - Databases, internet (think Google), graphics, computational science, ...
- Time difference really shows up as *n* grows!

1/8/2008

Analyzing Code

Basic Java operations Constant time **Consecutive statements** Sum of times

Conditionals Larger branch plus test

Loops Sum of iterations

Function calls Cost of function body

Recursive functions Solve recurrence relation

1/8/2008

Algorithm Analysis Examples

• Consider the following program segment:

• What is the value of x at the end? (equivalent: how many times is x := x+1 executed as a function of N?)

1/8/2008

11

Analyzing the Loop

• Total number of times x is incremented is executed =

$$1+2+3+...+N=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$$

- Congratulations We've just analyzed our first program!
 - Running time of the program is proportional to N(N+1)/2 for all N

1/8/2008 12

Another Example: Nested Loops

```
for i = 1 to n do
  for j = 1 to n do
    sum = sum + 1

for i = 1 to n do
  for j = i to n do
    sum = sum + 1
```

1/8/2008

3

And Another: Nested Loops

```
for i = 1 to n do
  for j = 1 to n do
    if (cond) {
        do_stuff(sum)
    } else {
        for k = 1 to n*n
        sum += 1
```

Exercise - Searching

```
2 3 5 16 37 50 73 75 126

// return "key is in a[0..n-1]"

bool Search(int a[], int n, int key){

// Insert your algorithm here

What algorithm would you choose to implement this code snlpet?
```

Linear Search Analysis

1/8/2008

Binary Search Analysis

```
// return "key is in a[low..high]"
bool BSearch( int a[], int low,
              int high, int key ) {
  // The subarray is empty
  if( low > high ) return false;
                                           Best case:
  // Search this subarray recursively
  int mid = (high + low) / 2;
  if( key == a[mid] ) {
                                           Worst case:
      return true;
  } else if( key < a[mid] ) {</pre>
      return BSearch( a, low,
                         mid-1, key );
  } else {
      return BSearch( a, mid+1,
                         high, key );
```

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is (are) the base case(s)?
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.
- 3. Find a closed-form expression by setting *the number of expansions* to a value which reduces the problem to a base case

1/8/2008

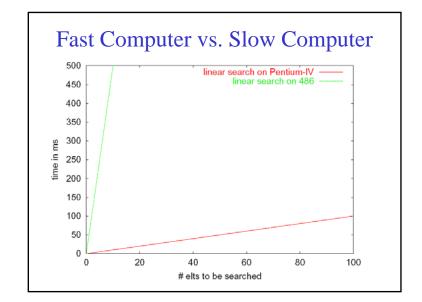
Linear Search vs Binary Search

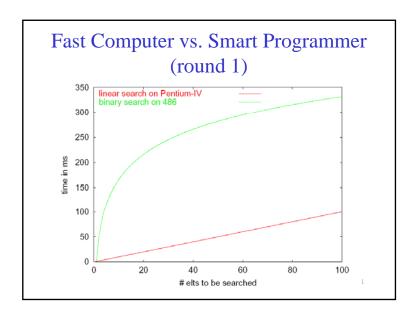
	Linear Search	Binary Search
Best Case		
Worst Case		

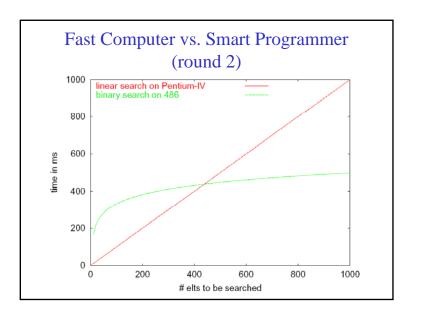
So ... which algorithm is better? What tradeoffs can you make?

1/8/2008

19







Asymptotic Analysis

- Asymptotic analysis looks at the *order* of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 2 \in \mathbf{O}(n)$

1/8/2008

- Binary search is $T(n) = 4 \log_2 n + 4$ ∈ $O(\log n)$

Remember: the fastest algorithm has the

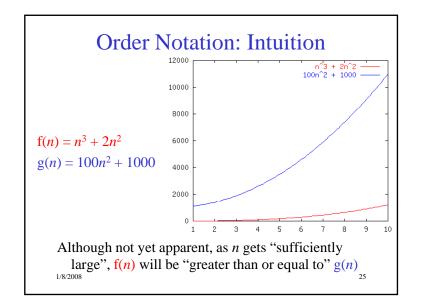
slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
 - $-4n+5 \Rightarrow$
 - $-0.5 \text{ n} \log n + 2n + 7 \Rightarrow$
 - $-n^3+2^n+3n \Rightarrow$
- Eliminate coefficients
 - $-4n \Rightarrow$
 - $-0.5 \text{ n log n} \Rightarrow$
 - $n log n^2 =>$

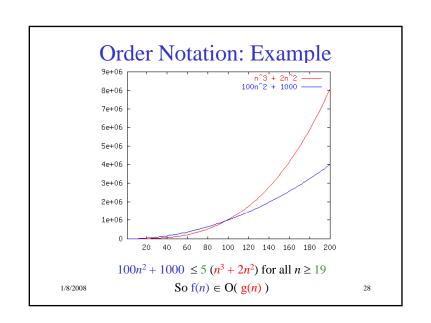
1/8/2008

24



Order Notation Upper bound: T(n) = O(f(n))**Big-O** Exist constants c and n' such that $T(n) \le c f(n)$ for all $n \ge n$ • Lower bound: $T(n) = \Omega(g(n))$ Omega Exist constants c and n' such that $T(n) \ge c g(n)$ for all $n \ge n$ Tight bound: $T(n) = \theta(f(n))$ Theta When both hold: T(n) = O(f(n)) $T(n) = \Omega(f(n))$ 1/8/2008 26

$O(\mathbf{f}(n))$ Definition $O(\mathbf{f}(n))$: a set or class of functions $g(n) \in O(f(n))$ iff there exist consts c and n_0 such that: $g(n) \le c f(n)$ for all $n \ge n_0$ Example: $100n^2 + 1000 \le 5 (n^3 + 2n^2)$ for all $n \ge 19$ So $g(n) \in O(f(n))$ Sometimes, you'll see the notation g(n) = O(f(n)). This is equivalent to $g(n) \in O(f(n))$ it is not an equality. Remember: notation O(f(n)) = g(n) is meaningless!



Big-O: Common Names

```
- constant: O(1)
```

- logarithmic: $O(\log n)$ $(\log_k n, \log n^2 \in O(\log n))$

 $\begin{array}{ll} - \mbox{ linear: } & O(n) \\ - \mbox{ log-linear: } & O(n \mbox{ log } n) \\ - \mbox{ quadratic: } & O(n^2) \end{array}$

- cubic: O(n³)

- polynomial: $O(n^k)$ (k is a constant) - exponential: $O(c^n)$ (c is a constant > 1)

1/8/2008 29

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than f(n)
- $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)

1/8/2008 31

Know Your Complexity Classes!

1/8/2008

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff There exist c and n_0 such that $g(n) \le c$ f(n) for all $n \ge n_0$ - $g(n) \in o(f(n))$ iff There exists a n_0 such that g(n) < c f(n) for all c and $n \ge n_0$
- $g(n) \in \Omega(f(n))$ iff Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = 0$ There exist c and n_0 such that $g(n) \ge c$ f(n) for all $n \ge n_0$ - $g(n) \in \omega(f(n))$ iff There exists a n_0 such that g(n) > c f(n) for all c and $n \ge n_0$
- $g(n) \in \theta(f(n))$ iff Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = \infty$ $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

1/8/2008 32

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
θ	=
0	<
ω	>

1/8/2008 33

Types of Analysis

Two orthogonal axes:

- bound flavor
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (θ)
- analysis case
 - worst case (adversary)
 - · average case
 - · best case
 - · "amortized"

1/8/2008

35

Perspective: Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
 - worst case
 - · your worst enemy is choosing input
 - best case
 - average case
 - · assumes some probabilistic distribution of inputs
 - amortized
 - · average time over many operations

1/8/2008 34

Pros and Cons of Asymptotic Analysis

1/8/2008

36