Sorting Lower Bound Radix Sort

CSE 326
Data Structures
Lecture 16

Reading

- · Reading
 - › Sections 7.8-7.11

Sorting Lower Bound, Radix Sort -Lecture 16 2

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- · Can we do any better?
- · No, if the basic action is a comparison.

Sorting Lower Bound, Radix Sort Lecture 16

3

Sorting Model

- Recall our basic assumption: we can <u>only</u> <u>compare two elements at a time</u>
 - we can only reduce the possible solution space by half each time we make a comparison
- · Suppose you are given N elements
 - › Assume no duplicates
- How many possible orderings can you get?
 - > Example: a, b, c (N = 3)

Sorting Lower Bound, Radix Sort -Lecture 16

Permutations

- · How many possible orderings can you get?
 - > Example: a, b, c (N = 3)
 - $\ \, ,\ \, (a\ b\ c),\,(a\ c\ b),\,(b\ a\ c),\,(b\ c\ a),\,(c\ a\ b),\,(c\ b\ a)$
 - > 6 orderings = 3-2-1 = 3! (ie, "3 factorial")
 - > All the possible permutations of a set of 3 elements
- · For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - \rightarrow N(N-1)(N-2)···(2)(1)= N! possible orderings

Sorting Lower Bound, Radix Sort -Lecture 16

Decision Trees

- · A Decision Tree is a Binary Tree such that:
 - > Each node = a set of orderings
 - · ie, the remaining solution space
 - > Each edge = 1 comparison
 - > Each leaf = 1 unique ordering
 - > How many leaves for N distinct elements?
 - · N!, ie, a leaf for each possible ordering
- · Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Sorting Lower Bound, Radix Sort -Lecture 16

Decision Trees and Sorting

- · Every sorting algorithm corresponds to a decision tree
 - > Finds correct leaf by choosing edges to follow · ie, by making comparisons
 - Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
 - > maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

Sorting Lower Bound, Radix Sort -Lecture 16

Decision Tree Example

How many leaves on a tree?

- Suppose you have a binary tree of height d. How many leaves can the tree have?
 - d = 1 at most 2 leaves.
 - at most 4 leaves, etc. , d = 2

Sorting Lower Bound, Radix Sort Lecture 16

Lower bound on Height

- · A binary tree of height d has at most 2d leaves
 - depth d = 1 2 leaves, d = 2 4 leaves, etc.
 - > Can prove by induction
- Number of leaves, L ≤ 2^d
- Height d > log₂ L
- · The decision tree has N! leaves
- So the decision tree has height d ≥ log₂(N!)

Sorting Lower Bound, Radix Sort Lecture 16

log(N!) is $\Omega(NlogN)$

 $\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1))$ $= \log N + \log(N-1) + \log(N-2) + \dots + \log 2 + \log 1$ $\geq \log N + \log(N-1) + \log(N-2) + \dots + \log \frac{N}{2}$ each of the selected terms is ≥ logN/2

 $\geq \frac{N}{2}(\log N - \log 2) = \frac{N}{2}\log N - \frac{N}{2}$ $=\Omega(N\log N)$

Sorting Lower Bound, Radix Sort -Lecture 16

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is Ω(N log N)
- Can we do better if we don't use comparisons?

Sorting Lower Bound, Radix Sort -Lecture 16 13

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to B^P-1
- Bucket-sort from least significant to most significant "digit" (base B)
- Requires P(B+N) operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then O(N) time to sort!

Sorting Lower Bound, Radix Sort -Lecture 16 14

After 2nd pass Bucket sort by 100's After 3rd pass by 100's After 3rd pass digit 3 9 3 4 5 6 7 8 9 38 67 123 0.09 3.38 1.23 0.03 1.23 0.09 1.23 0.

Implementation Options

- List
 - List of data, bucket array of lists.
 - Concatenate lists for each pass.
- Array / List
 - > Array of data, bucket array of lists.
- · Array / Array
 - Array of data, array for all buckets.
 - Requires counting.

Sorting Lower Bound, Radix Sort -Lecture 16

ound, Radix Sort - 18

Array / Array Data Array Count Array Address Array Target Array 53<u>7</u> 3 9 72<u>1</u> 3 38 12<u>3</u> 6<u>7</u> 2 123 3 537 4 67 0 2 3 4 5 7 3 0 0 0 2 2 478 - 8 3 Bucket i ranges from add[i] to add[i+1]-1 add[i] := add[i-1] + count[i-1], i > 0Sorting Lower Bound, Radix Sort -Lecture 16

Array / Array

- Pass 1 (over A)
 - Calculate counts and addresses for 1st "digit"
- Pass 2 (over T)
 - > Move data from A to T
 - Calculate counts and addresses for 2nd "digit"
- · Pass 3 (over A)
 - Move data from T to A
 - Calculate counts and addresses for 3nd "digit"
- ..
- · In the end an additional copy may be needed.

Sorting Lower Bound, Radix Sort -Lecture 16 20

Choosing Parameters for Radix Sort

- N number of integers given
- m bit numbers given
- · B number of buckets
 - \rightarrow B = 2^r calculations can be done by shifting.
 - N/B not too small, otherwise too many empty buckets.
 - P = m/r should be small.
- Example 1 million 64 bit numbers. Choose $B=2^{16}=65,536$. 1 Million / $B\approx15$ numbers per bucket. P=64/16=4 passes.

Sorting Lower Bound, Radix Sort -Lecture 16 21

Properties of Radix Sort

- · Not in-place
 - > needs lots of auxiliary storage.
- Stable
 - equal keys always end up in same bucket in the same order.
- Fast
 - \rightarrow B = 2^r buckets on m bit numbers

$$O(\frac{m}{r}(n+2^r))$$
 time

Sorting Lower Bound, Radix Sort -Lecture 16 .

Internal versus External Sorting

- So far assumed that accessing A[i] is fast Array A is stored in internal memory (RAM)
 - › Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
 - > Data on disk or tape
 - Delay in accessing A[i] e.g. need to spin disk and move head

Sorting Lower Bound, Radix Sort-Lecture 16 23

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
 - > External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - · Text gives some examples

Sorting Lower Bound, Radix Sort Lecture 16

Summary of Sorting

- · Sorting choices:
 - \rightarrow O(N²) Bubblesort, Insertion Sort
 - > O(N log N) average case running time:

 - Heapsort: In-place, not stable (read about it).

 Mergesort: O(N) extra space, stable.

 Quicksort: claimed fastest in practice but, O(N²) worst case. Needs extra storage for recursion. Not stable.
 - O(N) Radix Sort: fast and stable. Not comparison based. Not in-place.

Sorting Lower Bound, Radix Sort -Lecture 16