

Reading

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
, we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements Assume no duplicates
- How many possible orderings can you get? , Example: a, b, c ($\mathrm{N}=3$)
\qquad

Permutations

- How many possible orderings can you get?
, Example: $a, b, c \quad(N=3)$
, (a b c), (a c b), (bac), (b c a), (c a b), (c ba)
, 6 orderings $=3 \cdot 2 \cdot 1=3$! (ie, "3 factorial")
, All the possible permutations of a set of 3 elements
- For N elements
, N choices for the first position, ($\mathrm{N}-1$) choices for the second position, ..., (2) choices, 1 choice
, $\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}$! possible orderings

Decision Trees

- A Decision Tree is a Binary Tree such that:
, Each node = a set of orderings
- ie, the remaining solution space
, Each edge = 1 comparison
, Each leaf = 1 unique ordering
, How many leaves for N distinct elements? - N!, ie, a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
, Finds correct leaf by choosing edges to follow - ie, by making comparisons
, Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
, maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

How many leaves on a tree?

- Suppose you have a binary tree of height d. How many leaves can the tree have?
, $d=1$ at most 2 leaves,
, $d=2$ at most 4 leaves, etc.

Lower bound on Height

- A binary tree of height d has at most $\mathbf{2}^{\mathrm{d}}$ leaves , depth $d=1 \quad 2$ leaves, $d=2 \quad 4$ leaves, etc.
, Can prove by induction
- Number of leaves, $L \leq 2^{d}$
- Height $\mathrm{d} \geq \log _{2} \mathrm{~L}$
- The decision tree has N ! leaves
- So the decision tree has height $\mathrm{d} \geq \log _{2}(\mathrm{~N}$! $)$
$\log (N!)$ is $\Omega(N \log N)$

$$
\begin{aligned}
& \log (N!)=\log (N \cdot(N-1) \cdot(N-2) \cdots(2) \cdot(1)) \\
& =\log N+\log (N-1)+\log (N-2)+\cdots+\log 2+\log 1 \\
& \geq \log N+\log (N-1)+\log (N-2)+\cdots+\log \frac{N}{2} \\
& \text { each of the selected } \\
& \text { (terms is } \geq \log \mathrm{N} / 2) \\
& \geq \frac{N}{2} \log \frac{N}{2} \\
& \geq \frac{N}{2}(\log N-\log 2)=\frac{N}{2} \log N-\frac{N}{2} \\
& =\Omega(N \log N) \\
& 12 \\
& \overbrace{\text { select just the }} \\
& \text { first N/2 terms) } \\
& \underbrace{\text { terms is } \geq \log N / 2}
\end{aligned}
$$

$\Omega(\mathrm{N} \log \mathrm{N})$

- Run time of any comparison-based sorting algorithm is $\Omega(\mathbf{N} \log \mathbf{N})$
- Can we do better if we don't use comparisons?

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to B^{P}-1
- Bucket-sort from least significant to most significant "digit" (base B)
- Requires $P(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then $\mathrm{O}(\mathrm{N})$ time to sort!

Invariant: after k passes the low order k digits are sorted.

Implementation Options

- List
, List of data, bucket array of lists.
, Concatenate lists for each pass.
- Array / List
, Array of data, bucket array of lists.
- Array / Array
, Array of data, array for all buckets.
, Requires counting.

Array / Array

- Pass 1 (over A)
, Calculate counts and addresses for $1^{\text {st }}$ "digit"
- Pass 2 (over T)
, Move data from A to T
, Calculate counts and addresses for $2^{\text {nd }}$ "digit"
- Pass 3 (over A)
, Move data from T to A
, Calculate counts and addresses for $3^{\text {nd }}$ "digit"
- ...
- In the end an additional copy may be needed.

Properties of Radix Sort

- Not in-place
, needs lots of auxiliary storage.
- Stable
, equal keys always end up in same bucket in the same order.
- Fast
, $B=2^{r}$ buckets on m bit numbers
$\mathrm{O}\left(\frac{\mathrm{m}}{\mathrm{r}}\left(\mathrm{n}+2^{r}\right)\right)$ time
$\underset{\substack{\text { Sorting Lower Bound, Radix Sort - } \\ \text { Lecture } 16}}{\substack{16}}$
22
- N number of integers - given
- m bit numbers - given
- B number of buckets
, $B=2^{r}$ - calculations can be done by shifting.
, N/B not too small, otherwise too many empty buckets.
, $P=m / r$ should be small.
- Example - 1 million 64 bit numbers. Choose $B=2^{16}=65,536$. 1 Million $/ B \approx 15$ numbers per bucket. $P=64 / 16=4$ passes.

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
, External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Lecture 16

Summary of Sorting

- Sorting choices:
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ - Bubblesort, Insertion Sort
, $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ average case running time:
- Heapsort: In-place, not stable (read about it)
- Mergesort: O(N) extra space, stable.
- Quicksort: claimed fastest in practice but, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case. Needs extra storage for recursion. Not stable
$\mathrm{O}(\mathrm{N})$ - Radix Sort: fast and stable. Not comparison based. Not in-place.

Lecture 16

