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Hashing

CSE 326 

Data Structures

Lecture 15
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Readings and References

• Reading 
– Chapter 5
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Hashing

• Hashing is a family of data structures used 

to efficiently support insert, delete, find.

• It cannot be used efficently for other 

operations where the order of data is 
important. No list-all, range queries, 

successor, predecessor.
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General Idea

• Key space of size M, but we only want to 

store subset of size N, where N<<M.

– Keys are identifiers in programs. Compiler 

keeps track of them in a symbol table.

– Keys are student names.  We want to look up 

student records quickly by name.

– Keys are chess configurations in a chess 

playing program.

– Keys are URLs in a database of web pages.
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Simple Hash Table

Hash function:

h : U → { 0,1,…,Hsize -1}

U is the universe of keys

h(“name”) is the hash value of “name”

h(Judy Jones) = 4

h(Jerry Lee) = 7

Find(“name”) = T[h(“name”)]
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Hashing Properties

•

– Hash tables may have unused entries λ < 1

• Good quality hash function distribute data as 

evenly as possible over the keys.

• Collisions: h(inserted key) = h(existing key).

– Open hashing - linked lists

– Closed hashing - find a new place to put inserted 

key

HSize

N
  

λ
  Factor Load ==
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Good Hash Functions

• Integers: Division method
– Choose Hsize to be a prime 

h(n) = n mod Hsize

– Example. Hsize = 23, h(50) = 4, h(1257) = 15

• Character Strings
– x = a0a1a2…am is a character string. Define int(x) = 

a0+a1128 + a21282 +… +am128m-1

h(x) = int(x) mod Hsize

– Compute h(x) using Horner’s Rule
h :=0

for i = m to 0 by -1 do h := (ai +128h) mod Hsize

return h

Hashing - Lecture 15 8

A Bad Hash Function

• Keys able1, able2, able3, able4
– Hsize = 128

int(ablex) mod 128 = int(a) = 97

Thus, h(ablex) =h(abley) for all x and y

• Why use primes for hash table sizes?
– Primes have no nontrivial divisors 

– Numbers relatively prime to 128 will also work for 
character strings
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Multiplication Method

• Hash function defined by HSize and a floating 
point number A.
– Integer case

– h(k) = HSize * (k*A mod 1)

– Example: HSize = 10, A = .485
h(50) = 10 * (50*.485 mod 1)

= 10*(24.25 mod 1)
= 10*.25
= 2

+ HSize need not be prime
- More computation than division method

• Another alternative – Universal Hashing
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What about Collisions?

• Open Hashing - Collisions overflow into 

linked lists.

– Load factors > 1 are possible

• Closed Hashing - if a collision occurs find 
another place in the hash table for the 

entry.

– Load factor must be < 1
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Open Hashing (Chaining)
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• h(a) = h(b) and h(d) = h(g)

• Chains may be ordered or
unordered.  Little advantage
to ordering.
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Open Hashing Properties

• Load factor = λ
– Unsuccessful searches cost λ comparisons 

on average

– Successful searches cost 1 + λ/2 
comparisons on average

• Comparisons can be expensive so 

choosing λ between 1/2 and 1 is wise.
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Closed Hashing (Open Addressing)

• No chaining, every key fits in the hash table.

• Probe sequence
– h(k)
– (h(k) + f(1)) mod HSize

– (h(k) + f(2)) mod HSize , …

• Insertion: Find the first probe with an empty slot.

• Find:  Find the first probe that equals the query 
or is empty.  Stop at HSize probe, in any case.

• Deletion: lazy deletion is needed.  That is, mark 
locations as deleted, if a deleted key resides 
there.
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Linear Probing

• f(i) = i

• Probe sequence
h(k) 
(h(k) + 1) mod HSize
(h(k) + 2) mod HSize …

• Insertion (assuming λ < 1)
h := h(k)
while T(h) not empty do

h := (h + 1) mod HSize;

insert k in T(h)
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Linear Probing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

55

93

10

40

76

55

Probes  1                   1                 1                 3                 1                 3

Hashing - Lecture 15 16

Performance of Linear Probing

• If there is an available slot linear probing will find it.

• For large hash tables the expected number of probes 
on insertion is:

• The expected number of probes on successful 
searches is:

• Linear probing suffers from primary clustering.

• Not a good idea to use linear probing with λ > ½.
• Lazy deletion needed.  
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Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Quadratic Probing

• f(i) = i2

• Probe sequence
h(k) 
(h(k) + 1) mod HSize
(h(k) + 4) mod HSize

(h(k) + 9) mod HSize, …

• Insertion (assuming λ < 1/2)
h := h(k);
i := 0;
while T(h) not empty do {

h := (h + 2*i + 1) mod HSize;
i := i + 1 }

insert k in T(h)

Note: (i +1)2 – i2 = 2i + 1
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Quadratic Probing Works for λ < 1/2

• If HSize is prime then (h(x) + i2) mod 
HSize ≠ (h(x) + j2) mod HSize for i ≠ j and 
0 < i,j < HSize/2.

• Proof
(h(x) + i2) mod HSize = (h(x) + j2) mod HSize

(h(x) + i2) - (h(x) + j2) mod HSize = 0

(i2 - j2) mod HSize = 0

(i-j)(i+j) mod HSize = 0

⇒⇐ HSize does not divide (i-j) or (i+j) 
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Quadratic Probing may Fail if λ > 1/2

51 mod 7 = 2 ; i = 0

(2 + 1) mod 7 = 3; i = 1

(3 + 3) mod 7 = 6; i = 2

(6 + 5) mod 7 = 4; i = 3

(4 + 7) mod 7 = 4; i = 4

(4 + 9) mod 7 = 6; i = 5

(6 + 11) mod 7 = 3; i = 6

(3 + 13) mod 7 = 2, i = 7

…
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Performance of Quadratic Probing

• Although quadratic probing can fail for λ > ½, it 
is not likely to do so. We can use load factors 
greater than ½, but load factors close to 1 
should be avoided.

• Quadratic hashing does not suffer from primary 
clustering, but has only minor secondary 
clustering.

• With load factors near ½ the expected number of 
probes per successful search is about 1.5.

• Lazy deletion must be used.
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Double Hashing

• f(i) = i g(k) where g is a second hash function

• Probe sequence

h(k) 

(h(k) + g(k)) mod HSize

(h(k) + 2g(k)) mod HSize

(h(k) + 3g(k)) mod HSize, …

• In choosing g care must be taken so that  it 

never evaluates to 0.

• A good choice for gis to choose a prime R < 

HSize and let g(k) = R – (k mod R).
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Double Hashing Example
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h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                 2                 1                 2
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Double Hashing is Safe for λ < 1

• Let h(k) = k mod p and g(k) = q – (k mod q) where 2 < q 
< p and p and q are primes. The probe sequence h(k) + 
ig(k) mod p probes every entry of the hash table.

Let 0 < m < p, h = h(k), and g = g(k).  We show that h+ig mod p = 
m for some i.  0 < g < p, so g and p are relatively prime.  By 
extended Euclid’s algorithm that are s and t such that

sg + tp = 1.  Choose i = (m-h)s mod p

(h + ig) mod p =

(h + (m-h)sg) mod p =

(h + (m-h)sg + (m-h)tp) mod p =

(h + (m-h)(sg + tp) mod p =

(h  + (m-h)) mod p = m mod p = m
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Deletion in Hashing

• Open hashing (chaining) – no problem

• Closed hashing – must do lazy deletion. Deleted keys 
are marked as deleted.
– Find: done normally

– Insert: treat marked slot as an empty slot and fill it.
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Rehashing

• Build a bigger hash table of approximately twice the size 

when λ exceeds a particular value

– Go through old hash table, ignoring items marked 

deleted

– Recompute hash value for each non-deleted key and 
put the item in new position in new table

– Cannot just copy data from old table because the 
bigger table has a new hash function

• Running time is O(N) but happens very infrequently

– Not good for real-time safety critical applications
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Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to 
h2(x) = x mod 11.

0    1    2     3     4

25 37   83

52   98

λ = 1

0    1    2     3     4    5     6    7     8    9     10

25 37         83         52         98

λ = 5/11
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Rehashing Picture

• Starting with table of size 2, double when 
load factor > 1.

1    2   3    4   5    6   7    8  9   10  11 12 13 14  15  16 17 18  19 20  21 23 24  25

hashes

rehashes
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Amortized Analysis of 

Rehashing
• Cost of inserting n keys is < 3n

• 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example

– n = 33, Total = 33 + 64 –2 = 95 < 99

Hashing - Lecture 15 30

Case Study

• Spelling Dictionary - 30,000 words

• Goals
– Fast spell checking

– Minimal storage

• Possible solutions
– Sorted array and binary search

– Open hashing (chaining)

– Closed hashing with linear probing

• Notes
– Almost all searches are successful

– 30,000 word average 8 bytes per word, 240,000 bytes

– Pointers  are 4 bytes
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Storage

• Assume  word are stored as strings and entries in the 
arrays are pointers to the strings.

Binary search Open hashing Closed hashing

N pointers
N/λ + 2N pointers

N/λ pointers Hashing - Lecture 15 32

Analysis

• Binary Search
– Storage = N pointers + words = 360,000 bytes

– Time = log2N < 15 probes in worst case

• Open hashing
– Storage = 2N + N/ λ pointers + words

λ = 1 implies 600,000 bytes

– Time = 1 + λ/2 probes per access

λ = 1 implies 1.5 probes per access

• Closed hashing
– Storage = N/ λ pointers + words

λ = 1/2 implies 480,000 bytes

– Time = (1/2)(1+1/(1-λ)) probes
λ = 1/2 implies 1.5 probes per access
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Extendible Hashing

• Extendible hashing is a technique for storing 
large data sets that do not fit in memory.

• An alternative to B-trees
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3 bits of hash value used
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Splitting
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Rehashing

(2)

00001

00011

00100

00110

(2)

10000

10001

10011

(2)

01001

01011

01100

(2)

11101

11110

00     01      10      11
Insert 00111

000    001    010    011    100   101    110    111

(3)

00100

00110

00111

(2)

10000

10001

10011

(2)

01001

01011

01100

(2)

11101

11110

(3)

00001

00011

Hashing - Lecture 15 36

Analysis of Extendible Hashing

• On deletion neighbors can be merged.

• If table uses k bits but all pages use k-1 
bits then rehashing to a smaller table can 

be done.  Not normally an issue with large 
databases.

• Rehashing does not touch pages.

• Splitting and merging touch only two 

pages.
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Fingerprints

• Given a string x we want a fingerprint x’ with the 

properties.

– x’ is short, say 128 bits

– Given x ≠ y the probability that x’ = y’ is infintesimal 
(almost zero)

– Computing x’ is very fast

• MD5 - Message Digest Algorithm 5 is a 

recognized standard

• Applications in databases and cryptography
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Fingerprint Math

Given 128 bits and N strings what is the probability that the

fingerprints of two strings coincide? 

N128

128128128

)(2

1)N(21)(22
1

+−−− L

This is essentially zero for N < 240.
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Hashing Summary

• Hashing is one of the most important data 

structures.

• Hashing has many applications where 

operations are limited to find, insert, and delete.

• Dynamic hash tables have good amortized 

complexity.

• Extendible hashing is useful in databases.

• Fingerprints good for databases and crypto.


