

Readings and References

- Reading
- Chapter 5

Hashing

- Hashing is a family of data structures used to efficiently support insert, delete, find.
- It cannot be used efficently for other operations where the order of data is important. No list-all, range queries, successor, predecessor.

General Idea

- Key space of size M, but we only want to store subset of size N , where $\mathrm{N} \ll \mathrm{M}$.
- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

Simple Hash Table

Hash function:
$h: U \rightarrow\{0,1, \ldots$, Hsize -1$\}$
U is the universe of keys
h ("name") is the hash value of "name"
h(Judy Jones) $=4$
h(Jerry Lee) $=7$
Find("name") = T[h("name")]

Hashing - Lecture 15

Hashing Properties

- Load Factor $=\lambda=\frac{\mathrm{N}}{\text { HSize }}$
- Hash tables may have unused entries $\lambda<1$
- Good quality hash function distribute data as evenly as possible over the keys.
- Collisions: h (inserted key) $=\mathrm{h}$ (existing key).
- Open hashing - linked lists
- Closed hashing - find a new place to put inserted key

Good Hash Functions

- Integers: Division method
- Choose Hsize to be a prime $\mathrm{h}(\mathrm{n})=\mathrm{n}$ mod Hsize
- Example. Hsize $=23, h(50)=4, h(1257)=15$
- Character Strings
$-x=a_{0} a_{1} a_{2} \ldots a_{m}$ is a character string. Define $\operatorname{int}(x)=$ $a_{0}+a_{1} 128+a_{2} 128^{2}+\ldots+a_{m} 128^{m-1}$
$h(x)=\operatorname{int}(x) \bmod$ Hsize
- Compute $h(x)$ using Horner's Rule
$\mathrm{h}:=0$
for $\mathrm{i}=\mathrm{m}$ to 0 by -1 do $\mathrm{h}:=\left(\mathrm{a}_{\mathrm{i}}+128 \mathrm{~h}\right)$ mod Hsize return h

Multiplication Method

- Hash function defined by HSize and a floating point number A.
- Integer case
$-h(k)=\lfloor$ HSize * (k*A mod 1) \rfloor
- Example: $\mathrm{HSize}=10, \mathrm{~A}=.485$
$h(50)=\left\lfloor 10^{*}\left(50^{*} .485 \bmod 1\right)\right\rfloor$
$=\left\lfloor 10^{*}(24.25 \bmod 1)\right\rfloor$
$=\left\lfloor 10^{*} .25\right\rfloor$
$=2$
+ HSize need not be prime
- More computation than division method
- Another alternative - Universal Hashing

Open Hashing (Chaining)

- $\mathrm{h}(\mathrm{a})=\mathrm{h}(\mathrm{b})$ and $\mathrm{h}(\mathrm{d})=\mathrm{h}(\mathrm{g})$
- Chains may be ordered or unordered. Little advantage to ordering.

Closed Hashing (Open Addressing)

- No chaining, every key fits in the hash table.
- Probe sequence
-h(k)
- (h(k) +f(1)) mod HSize
- (h(k) $+\mathrm{f}(2))$ mod HSize , ...
- Insertion: Find the first probe with an empty slot.
- Find: Find the first probe that equals the query or is empty. Stop at HSize probe, in any case.
- Deletion: lazy deletion is needed. That is, mark locations as deleted, if a deleted key resides there.

Linear Probing

- $f(i)=i$
- Probe sequence
$h(k)$
(h(k) + 1) mod HSize
(h(k) + 2) mod HSize ...
- Insertion (assuming $\lambda<1$)
$\mathrm{h}:=\mathrm{h}(\mathrm{k})$
while $\mathrm{T}(\mathrm{h})$ not empty do
$\mathrm{h}:=(\mathrm{h}+1)$ mod HSize;
insert k in $T(h)$

Performance of Linear Probing

- If there is an available slot linear probing will find it.
- For large hash tables the expected number of probes on insertion is:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

- The expected number of probes on successful searches is:

$$
\frac{1}{2}\left(1+\frac{1}{1-\lambda}\right)
$$

- Linear probing suffers from primary clustering.
- Not a good idea to use linear probing with $\lambda>1 / 2$.
- Lazy deletion needed.

Linear Probing - Clustering


```
no collision\longrightarrow\longrightarrow
no collision\longrightarrow collision in small cluster
    CN
    UH:
    4,
    W)
    *)
    collision in large cluster
    *)
        [R. Sedgewick]

\section*{Quadratic Probing}
```

- f(i) = i
- Probe sequence
h(k)
(h(k)+1) mod HSize
(h(k)+4)
(h(k) + 9) mod HSize,
- Insertion (assuming \lambda<1/2)
h := h(k);
while i T(h) not empty do
h := (h+2*i + 1) mod HSize;
i:= i + 1 }
insert k in T(h)
Note: (i+1)}\mp@subsup{)}{}{2}-\mp@subsup{i}{}{2}=2i+

```

\section*{Quadratic Probing Works for \(\lambda<1 / 2\)}
- If HSize is prime then \(\left(h(x)+i^{2}\right)\) mod HSize \(\neq\left(h(x)+j^{2}\right)\) mod HSize for \(i \neq j\) and \(0 \leq \mathrm{i}, \mathrm{j}<\mathrm{HSize} / 2\).
- Proof
\(\left(h(x)+i^{2}\right) \bmod\) HSize \(=\left(h(x)+j^{2}\right) \bmod\) HSize \(\left(h(x)+i^{2}\right)-\left(h(x)+j^{2}\right) \bmod\) HSize \(=0\)
\(\left(\mathrm{i}^{2}-\mathrm{j}^{2}\right) \bmod\) HSize \(=0\)
\((\mathrm{i}-\mathrm{j})(\mathrm{i}+\mathrm{j}) \bmod \mathrm{HSize}=0\)
\(\Rightarrow \Leftarrow\) HSize does not divide ( \(\mathrm{i}-\mathrm{j}\) ) or ( \(\mathrm{i}+\mathrm{j}\) )

Quadratic Probing may Fail if \(\lambda \geq 1 / 2\)

51
\begin{tabular}{|c|c|c|c|c|}
\hline & 9 & ज & & \\
\hline
\end{tabular}
\(51 \bmod 7=2 ; i=0\) \((2+1) \bmod 7=3 ; i=1\) \((3+3) \bmod 7=6 ; i=2\)
\((6+5) \bmod 7=4 ; i=3\)
\((4+7) \bmod 7=4 ; i=4\)
\((4+9) \bmod 7=6 ; i=5\)
\((6+11) \bmod 7=3 ; i=6\)
\((3+13) \bmod 7=2, i=7\)
...

\section*{Performance of Quadratic Probing}
- Although quadratic probing can fail for \(\lambda \geq 1 / 2\), it is not likely to do so. We can use load factors greater than \(1 / 2\), but load factors close to 1 should be avoided.
- Quadratic hashing does not suffer from primary clustering, but has only minor secondary clustering.
- With load factors near \(1 / 2\) the expected number of probes per successful search is about 1.5.
- Lazy deletion must be used.

\section*{Double Hashing}
- \(f(\mathrm{i})=\mathrm{i} \mathrm{g}(\mathrm{k})\) where g is a second hash function
- Probe sequence
\[
\begin{aligned}
& h(k) \\
& (h(k)+g(k)) \bmod \text { HSize } \\
& (h(k)+2 g(k)) \bmod \text { HSize }
\end{aligned}
\]
\[
(h(k)+3 g(k)) \bmod \text { HSize, } \ldots
\]
- In choosing g care must be taken so that it never evaluates to 0 .
- A good choice for gis to choose a prime \(\mathrm{R}<\) HSize and let \(g(k)=R-(k \bmod R)\).

\section*{Double Hashing is Safe for \(\lambda<1\)}
- Let \(\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod \mathrm{p}\) and \(\mathrm{g}(\mathrm{k})=\mathrm{q}-(\mathrm{k} \bmod \mathrm{q})\) where \(2<\mathrm{q}\) \(<p\) and \(p\) and \(q\) are primes. The probe sequence \(h(k)+\) \(\mathrm{g}(\mathrm{k}) \bmod \mathrm{p}\) probes every entry of the hash table.
Let \(0 \leq m<p, h=h(k)\), and \(g=g(k)\). We show that \(h+i g \bmod p=\) m for some i . \(0<g<p\), so \(g\) and \(p\) are relatively prime. By extended Euclid's algorithm that are \(s\) and \(t\) such that
\(s g+t p=1\). Choose \(i=(m-h) s \bmod p\)
\((\mathrm{h}+\mathrm{ig}) \bmod \mathrm{p}=\)
\((h+(m-h) s g) \bmod p=\)
\((h+(m-h) s g+(m-h) t p) \bmod p=\)
\((h+(m-h)(s g+t p) \bmod p=\)
\((h+(m-h)) \bmod p=m \bmod p=m\)

\section*{Double Hashing Example}
\[
\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 7 \text { and } \mathrm{g}(\mathrm{k})=5-(\mathrm{k} \bmod 5)
\]


\section*{Deletion in Hashing}
- Open hashing (chaining) - no problem
- Closed hashing - must do lazy deletion. Deleted keys are marked as deleted.
- Find: done normally
- Insert: treat marked slot as an empty slot and fill it.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
\[
\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 7
\] \\
Linear probing
\end{tabular}} & \multirow[t]{2}{*}{0} & & 0 & & \multirow[t]{7}{*}{Insert 30} \\
\hline & & & 1 & & \\
\hline & 2 & 16 & 2 & 16 & \\
\hline Find 59 & 3 & 23 & 3 & 30 & \\
\hline & 4 & 59 & 4 & 59 & \\
\hline & 5 & & 5 & & \\
\hline & 6 & 76 & 6 & 76 & \\
\hline
\end{tabular}

\section*{Rehashing}
- Build a bigger hash table of approximately twice the size when \(\lambda\) exceeds a particular value
- Go through old hash table, ignoring items marked deleted
- Recompute hash value for each non-deleted key and put the item in new position in new table
- Cannot just copy data from old table because the bigger table has a new hash function
- Running time is \(\mathrm{O}(\mathrm{N})\) but happens very infrequently
- Not good for real-time safety critical applications

\section*{Rehashing Example}
- Open hashing \(-h_{1}(x)=x\) mod 5 rehashes to \(h_{2}(x)=x \bmod 11\).


\section*{Case Study}
- Spelling Dictionary - 30,000 words
- Goals
- Fast spell checking
- Minimal storage
- Possible solutions
- Sorted array and binary search
- Open hashing (chaining)
- Closed hashing with linear probing
- Notes
- Almost all searches are successful
- 30,000 word average 8 bytes per word, 240,000 bytes
- Pointers are 4 bytes


\section*{Analysis}
- Binary Search
- Storage \(=\mathrm{N}\) pointers + words \(=360,000\) bytes
- Time \(=\log _{2} \mathrm{~N} \leq 15\) probes in worst case
- Open hashing
- Storage \(=2 \mathrm{~N}+\mathrm{N} / \lambda\) pointers + words
\(\lambda=1\) implies 600,000 bytes
- Time \(=1+\lambda / 2\) probes per access
\(\lambda=1\) implies 1.5 probes per access
- Closed hashing
- Storage \(=\mathrm{N} / \lambda\) pointers + words \(\lambda=1 / 2\) implies 480,000 bytes
- Time \(=(1 / 2)(1+1 /(1-\lambda))\) probes \(\lambda=1 / 2\) implies 1.5 probes per access

\section*{Extendible Hashing}
- Extendible hashing is a technique for storing large data sets that do not fit in memory.
- An alternative to B-trees

3 bits of hash value used




\section*{Analysis of Extendible Hashing}
- On deletion neighbors can be merged.
- If table uses \(k\) bits but all pages use k-1 bits then rehashing to a smaller table can be done. Not normally an issue with large databases.
- Rehashing does not touch pages.
- Splitting and merging touch only two pages.

\section*{Fingerprints}
- Given a string x we want a fingerprint x ' with the properties.
- x ' is short, say 128 bits
- Given \(x \neq y\) the probability that \(x^{\prime}=y^{\prime}\) is infintesimal (almost zero)
- Computing \(x^{\prime}\) is very fast
- MD5 - Message Digest Algorithm 5 is a recognized standard
- Applications in databases and cryptography

Given 128 bits and \(N\) strings what is the probability that the fingerprints of two strings coincide?
\[
1-\frac{2^{128}\left(2^{128}-1\right) \cdots\left(2^{128}-N+1\right)}{\left(2^{128}\right)^{\mathrm{N}}}
\]

This is essentially zero for \(\mathrm{N}<2^{40}\).

Fingerprint Math

\section*{Hashing Summary}
- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.
- Extendible hashing is useful in databases.
- Fingerprints good for databases and crypto.```

