

Reading

- Reading

, Chapter 8

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets. $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
, $\{3, \underline{5}, 7\},\{4,2,8\},\{\underline{9}\},\{1,6\}$

Union

- Union (x, y) - take the union of two sets named x and y
, $\{3, \underline{5}, 7\},\{4,2,8\},\{9\},\{1,6\}$
Union(5,1)
$\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,

Find

- Find(x) - return the name of the set containing x.
, $\{3, \underline{5}, 7,1,6\},\{4,2,8\}$, \{ 9$\}$,
, $\operatorname{Find}(1)=5$
, $\operatorname{Find}(4)=8$

Cute Application

- Build a random maze by erasing edges.

Disjoint Union/Find - Lecture 14

Cute Application

- Repeatedly pick random edges to delete.

A Good Solution

Disjoint Union/Find - Lecture 14

Number the Cells								
We have disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $E=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.								
Start	1	2	3	4	5	6		
	7	8	9	10	11	12		
	13	14	15	16	17	18		
	19	20	21	22	23	24		
	25	26	27	28	29	30		
	31	32	33	34	35	36	End	
Disjoint Union/Find - Lecture 14								13

Example									
Pick (19,20)								S	
Start								14,20,26,27	
	1	2	3	4	5	6		\{3\}	
		8	9	10	11	12		\{4\}	
					1	12		\{5\}	
	13	14		16	17	18		\{6\}	
								\{10	
	19	20	21	22	23	24		$\{11, \underline{17}\}$	
								\{12\}	
	25	26	27	28		30		\{15,16,21\}	
	31	32	33	34	35	36	End		
								\{22,23,24,29,39	
				Disjoint	Union/F	ind - Le	cture 14	33,34,35,36\}	17

Example at the End

Find Operation

- Find (x) follow x to the root and return the root

Union Operation

- Union(i,j) - assuming i and j roots, point i to j .

Simple Implementation

- Array of indices
$\mathrm{Up}[\mathrm{x}]=0$ means
x is a root.

Union

Union(up[] : integer array, x,y : integer) :
//precondition: x and y are roots//
Up $[x]:=y$
\}

Constant Time!

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least $2^{\text {h }}$.
- Proof by induction
, Basis: $h=0$. The up-tree has one node, $2^{0}=1$
, Inductive step: Assume true for all h' < h.

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \geq 2^{h}$
- $\log _{2} n \geq h$
- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Example of Worst Cast (cont')

After $\mathrm{n}-1=\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1$ Weighted Unions

If there are $\mathrm{n}=2^{\mathrm{k}}$ nodes then the longest path from leaf to root has length k.

Elegant Array Implementation

Weighted Union

W-Union(i,j : index) \{
//i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then up[i] := j; weight[j] := wi + wj;
else up[j] :=i; weight[i] := wi +wj;
\}

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] # 0 do //find root//
        r := up [r];
    if i f r then //compress path//
        k := up[i];
        while k f r do
            up[i] := r;
            i := k;
            k := up[k]
        return(r)
    }
```


Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- Time complexity for $m \geq n$ operations on n elements is $\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$ where $\log ^{*} \mathrm{n}$ is a very slow growing function.
, Log ${ }^{*} \mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
, average time per operation is essentially a constant.
, worst case time for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

Find (up [] : integer array, x : integer) : integer \{
//precondition: x is in the range 1 to size//
f $u p[x]=0$ then return x
else return Find (up, up [x])
\}

Iterative
Find(up [] : integer array, x : integer) : integer $\{$
/precondition: x is in the range 1 to size//
while up $[x] \neq 0$ do
:= up [x]
return x ;
\}

