CSE 326: Data Structures	
Graph Algorithms	
Graph Search	
Lecture 13	

Reading	
Chapter 9.1, 9.2, 9.3	

Graphs In Practice	
q Web graph - Vertices are web pages - Edge from u to v is a link to v appears on u q Call graph of a computer program - Vertices are functions - Edge from u to v is u calls v q Task graph for a work flow - Vertices are tasks - Edge from u to v if u must be completed before v begins	
Graph Alorithms, Graph Search - Leeture 13	4

Graph Representation 1: Adjacency Matrix
A $\|v\| \times\|v\|$ array in which an element (u, v) is true if and only if there is an edge from \mathbf{u} to \mathbf{v}

Terminology
q In directed graphs, edges have a specific direction
q In undirected graphs, edges are two-way
q Vertices \mathbf{u} and \mathbf{v} are adjacent if (u, v) $\in \mathbf{E}$
q A sparse graph has $\mathrm{O}(\|\mathrm{V}\|)$ edges (upper bound)
q A dense graph has $\Omega\left(\|\mathrm{V}\|^{2}\right)$ edges (lower bound)
q A complete graph has an edge between every pair of
vertices
q An undirected graph is connected if there is a path
between any two vertices

Trees as Graphs
Every tree is a graph with some restrictions: - the tree is directed - there are no cycles (directed or undirected) - there is a directed path from the root to every node Graph Algorithms, Graph Search - Lecture 13

Directed Acyclic Graphs (DAGs)

DAGs are
directed
graphs with
no cycles.

Trees \subset DAGs \subset Graphs
Graph Algorithms, Graph Search - Lecture 13

access ()

Topological Sort
Label each vertex's in-degree
Initialize a queue to contain all in-degree zero vertices
While there are vertices remaining in the queue
Remove a vertex v with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to v
Put any of these with new in-degree zero on the queue
Runtime: $\mathrm{O}(\|\mathrm{V}\|+\|\mathrm{e}\|)$
Giraph Algorithms, Graph Search - Lecture 13

Example	
	Lexuo 13

Graph Search
Many problems in computer science
correspond to searching for a path in a
graph, given a start node and goal criteria
• Route planning - Mapquest
• Packet-switching
• VLSI layout
- 6-degrees of Kevin Bacon
• Program synthesis
- Speech recognition
- We'll discuss these last two later...
Graph Algorithms, Graph Search - Lecture 13

General Graph Search Algorithm
Open - some data structure (e.g., stack, queue, heap)
Criteria - some method for removing an element from Open
Search(Start, Goal_test, Criteria)
insert(Start, Open);
repeat
if (empty(Open)) then return fail;
select Node from Open using Criteria;
Mark Node as visited;
if (Goal qestefNodefotherf return Node;

Depth-First Graph Search
Open - Stack
Criteria - Pop
DFS(Start, Goal_test)
push(Start, Open);
repeat
if (empty(Open)) then return fail;
Node := pop(Open);
Mark Node as visited;
if (Goal qestefNodefefathero peturn Node;

Breadth-First Graph Search
Open - Queue
Criteria - Dequeue (FIFO)
BFS(Start, Goal_test)
enqueue(Start, Open);
repeat
if (empty(Open)) then return fail;
Node := dequeue(Open); Mark Node as visited; if (Goal_test(Node)) then return Node; for each Child of node do if (Child not already visited) then enqueue(Child, Open); end Graph Algorithms, Graph Search - Lecture 13

Two Models
1. Standard Model: Graph given
explicitly with n vertices and e
edges.
q Search is $\mathrm{O}(\mathrm{n}+\mathrm{e})$ time in adjacency
list representation
2.Al Model: Graph generated on the fly. qTime for search need not visit every vertex. Graph Algorithms. Graph search. Lecture 13

Al Comparison: DFS versus BFS
Depth-first search
• Does not always find shortest paths
• Must be careful to mark visited vertices, or you
could go into an infinite loop if there is a cycle
Breadth-first search
• Always finds shortest paths - optimal solutions
• Marking visited nodes can improve efficiency, but
even without doing so search is guaranteed to
terminate
Is BFS always preferable?
Graph Algorithms, Graph Search - Lecture 13

DFS Space Requirements

Assume:

- Longest path in graph is length d
- Highest number of out-edges is k

DFS stack grows at most to size $d k$

- For $k=10, d=15$, size is 150

BFS Space Requirements
Assume
• Distance from start to a goal is d
• Highest number of out edges is k BFS
Queue could grow to size k^{d}
• For $k=10, d=15$, size is
$1,000,000,000,000,000$

Conclusion
In the AI Model, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed
d.
- If we knew the distance from the start
to the goal in advance, we can just not
add any children to stack after level d
- But what if we don't know d in
advance?
Grapon Algorithms, Graph Search - Lecture 13

Recursive Depth-First Search
DFS(v: vertex) mark $v ;$ for each vertex w adjacent to v do if w is unmarked then DFS(w)
Note: the recursion has the same effect as a stack $\quad 35$

Saving the Path
Our pseudocode returns the goal node
found, but not the path to it
How can we remember the path?
- Add a field to each node, that points
to the previous node along the path
- Follow pointers from goal back to start
to recover path

Graph Search, Saving Path
Search(Start, Goal_test, Criteria) insert(Start, Open); repeat if (empty(Open)) then return fail; select Node from Open using Criteria; Mark Node as visited; if (Goal_test (Node)) then return Node; for each Child of node do if (Child not already visited) then Child.previous := Node; Insert(Child, Open); end Graph Algorithms, Graph Search - Leoture 13

Dijkstra's Algorithm for Single Source Shortest Path	
Similar to breadth-first search, but uses a heap instead of a queue:	
- Always select (expand) the vertex that has a lowest-cost path to the start vertex	
Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges	
	45

Pseudocode for Dijkstra

Initialize the cost of each node to ∞
s.cost :=0
insert(s,0,heap);
While (! empty(heap))

$$
\mathrm{n}:=\text { deleteMin(heap) }
$$

For each edge $e=(n, a)$ do
if (n.cost + e.cost $<$ a.cost) then
a.cost $=\mathrm{n} . \operatorname{cost}+\mathrm{e} \cdot \operatorname{cost}$;
a.previous $=n$;
if (a is in the heap) then decreaseKey(a, a.cost, heap) else insert(a, a.cost, heap)
end
end

Important Features
Once a vertex is removed from the
heap, the cost of the shortest path to
that node is known
While a vertex is still in the heap,
another shorter path to it might still
be found
The shortest path itself can found by
following the backward pointers
stored in node.previous
Grapo Algoritms, Graph Search - Lectur 13

Best-First Search	
Open - Heap (priority queue) Criteria - Smallest key (highest priority) $h(n)$ - heuristic estimate of distance from n to closest go	
```Best_First_Search( Start, Goal_test) insert(Start, h(Start), heap); repeat if (empty(heap)) then return fail; Node := deleteMin(heap); Mark Nronduemmenvesitequer```	8



## Improving Best-First

q Best-first is often tremendously faster than BFS/Dijkstra, but might stop with a non-optimal solution
q How can it be modified to be (almost) as fast, but guaranteed to find optimal solutions?
q A* - Hart, Nilsson, Raphael 1968

- One of the first significant algorithms developed in AI
- Widely used in many applications

Graph Algorithms, Graph Search - Lecture 13

A*
Exactly like Best-first search, but using a different   criteria for the priority queue:   minimize (distance from start) +   (estimated distance to goal)
priority $f(n)=g(n)+h(n)$   $f(n)=$ priority of a node   $g(n)=$ true distance from start   $h(n)=$ heuristic distance to goal   Graph Algoritms, Graph Search - Lecture 13

## Optimality of A*

Suppose the estimated distance is always less than or equal to the true distance to the goal

- heuristic is a lower bound

Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!


Blocks World


Application of $A^{*}$ : Speech
Recognition


Speech Recognition as Shortest
Path



Summary: Graph Search
Depth First
• Little memory required
• Might find non-optimal path
Breadth First
• Much memory required
• Always finds optimal path
Dijskstra's Short Path Algorithm
• Like BFS for weighted graphs
Best First
• Can visit fewer nodes
• Might find non-optimal path
A* Can visit fewer nodes than BFS or Dijkstra
• Optimal if heuristic estimate is a lower-bound

