Binomial Queues

CSE 326
Data Structures
Lecture 12

Reading

- · Reading
 - › Section 6.8,

Binomial Queues - Lecture 12

.

Merging heaps

- · Binary Heap is a special purpose hot rod
 - > FindMin, DeleteMin and Insert only
 - does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

Binomial Queues - Lecture 12

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Binomial Queues - Lecture 12

Worst Case Run Times

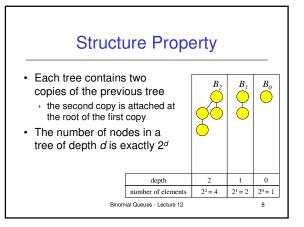
Binomial Queues - Lecture 12

Binomial Queues

- Binomial queues give up Θ(1) FindMin performance in order to provide O(log N) merge performance
- A binomial queue is a collection (or forest) of heap-ordered trees
 - › Not just one tree, but a collection of trees
 - > each tree has a defined structure and capacity
 - › each tree has the familiar heap-order property

Binomial Queues - Lecture 12

ues - Lecture 12



Powers of 2

- Any number N can be represented in base 2
 - A base 2 value identifies the powers of 2 that are to be included

8	4	2,1	ਜੰ		
- 11		H.	- 11		
23	52	77	°	Hex ₁₆	Decimal ₁₀
		1	1	3	3
	1	0	0	4	4
	1	0	1	5	5

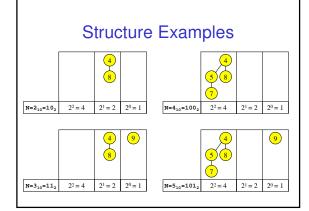
Binomial Queues - Lecture 12

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, ie 2^d nodes
- So the <u>structure</u> of a forest of binomial trees can be characterized with a single binary number
 - $100_2 \rightarrow 1.2^2 + 0.2^1 + 0.2^0 = 4 \text{ nodes}$

Binomial Queues - Lecture 12

10

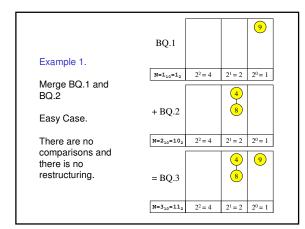


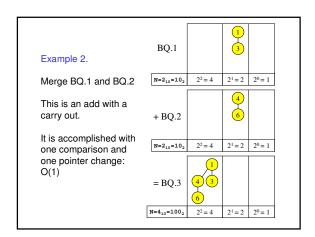
What is a merge?

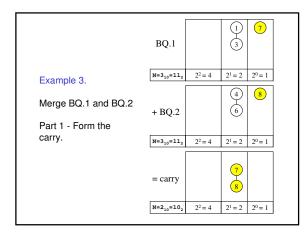
- · There is a direct correlation between
 - , the number of nodes in the tree
 - > the representation of that number in base 2
 - , and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the sum of N₁+N₂
- We can use that fact to help see how fast merges can be accomplished

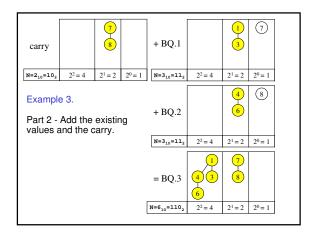
Binomial Queues - Lecture 12

12







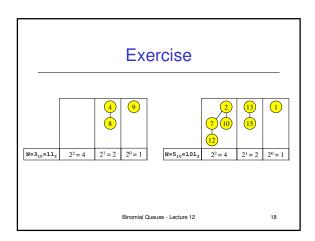


Merge Algorithm

- · Just like binary addition algorithm
- Assume trees $\boldsymbol{X}_0,...,\boldsymbol{X}_n$ and $\boldsymbol{Y}_0,...,\boldsymbol{Y}_n$ are binomial queues
 - X_i and Y_i are of type B_i or null

 $\begin{array}{l} \textbf{C}_0 := \text{null; //initial carry is null//} \\ \text{for i = 0 to n do} \\ \text{combine } \textbf{X}_i, \textbf{Y}_i, \text{ and } \textbf{C}_i \text{ to form } \textbf{Z}_i \text{ and new } \textbf{C}_{i+1} \\ \textbf{Z}_{n+1} := \textbf{C}_{n+1} \end{array}$

Binomial Queues - Lecture 12



O(log N) time to Merge

- For N keys there are at most \[log_2 N \] trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is O(log N).

Binomial Queues - Lecture 12

es - Lecture 12

19

Insert

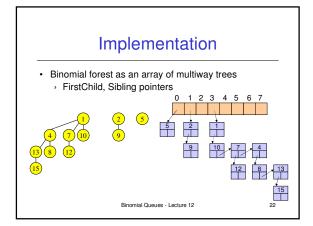
- Create a single node queue B₀ with the new item and merge with existing queue
- · O(log N) time

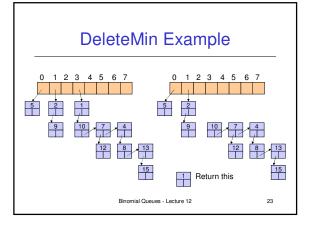
Binomial Queues - Lecture 12

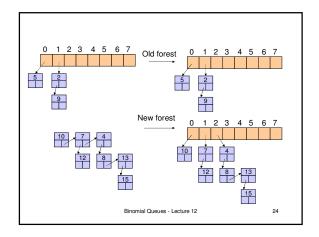
DeleteMin

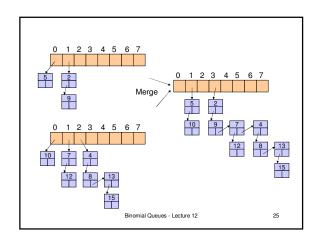
- 1. Assume we have a binomial forest $\boldsymbol{X}_0, \dots, \boldsymbol{X}_m$
- 2. Find tree X_k with the smallest root
- 3. Remove X_k from the queue
- 4. Remove root of \boldsymbol{X}_k (return this value)
 - This yields a binomial forest $Y_0, Y_1, ..., Y_{k-1}$.
- 5. Merge this new queue with remainder of the original (from step 3)
- Total time = O(log N)

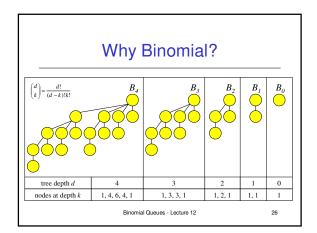
Binomial Queues - Lecture 12











Other Priority Queues

- Leftist Heaps
- > O(log N) time for insert, deletemin, merge
- Skew Heaps
- $\,\,{}^{\backprime}$ O(log N) amortized time for insert, deletemin, merge
- Fibonacci Heaps -
 - > O(1) amortized time for findmin, insert, merge
- O(log n) amortized time for deletemin, delete
- Calendar Queues

 - O(1) average time for insert and deletemin
 Assuming insertions are suitably "random"
 Suitable for limited, but important, applications

Binomial Queues - Lecture 12

