Binary Heaps

CSE 326 Data Structures Lecture 11

Readings and References

- · Reading
 - Sections 6.1-6.4

Binary Heaps - Lecture 11

A New Problem...

- Application: Find the smallest (or highest priority) item quickly
 - > Operating system needs to schedule jobs according to priority
 - > Doctors in ER take patients according to severity of injuries
 - > Event simulation (bank customers arriving and departing, ordered according to when the event happened)

Binary Heaps - Lecture 11

Priority Queue ADT

- · Priority Queue can efficiently do:
 - FindMin (and DeleteMin)
 - Insert
- · What if we use...
 - > Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - > Binary Search Trees: What is the run time for Insert and FindMin?

Binary Heaps - Lecture 11

Less flexibility → More speed

- Lists
 - If sorted: FindMin is O(1) but Insert is O(N)
 - \rightarrow If not sorted: Insert is O(1) but FindMin is O(N)
- · Balanced Binary Search Trees (BSTs)
 - Insert is O(log N) and FindMin is O(log N)
- BSTs look good but...
 - > BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin

Binary Heaps - Lecture 11

Better than a speeding BST

- · We can do better than Balanced Binary Search Trees?
 - > Very limited requirements: Insert, FindMin, DeleteMin
 - FindMin is O(1)
 - Insert is O(log N)
 - DeleteMin is O(log N)

Binary Heaps

- A binary heap is a binary tree that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - · every node is less than or equal to its children
 - or every node is greater than or equal to its children
 - The root node is always the smallest node
 - or the largest, depending on the heap order

Binary Heaps - Lecture 11

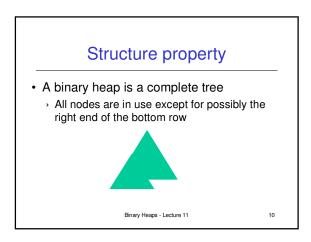
Heap order property

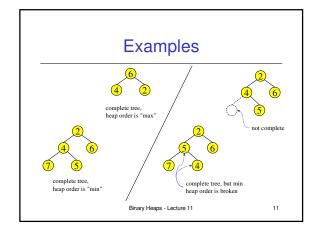
A heap provides limited ordering information
Each path is sorted, but the subtrees are not sorted relative to each other
A binary heap is NOT a binary search tree

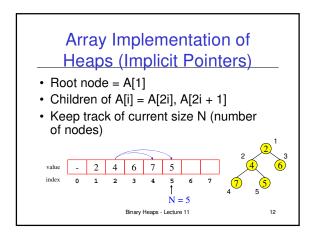
These are all valid binary heaps (minimum)

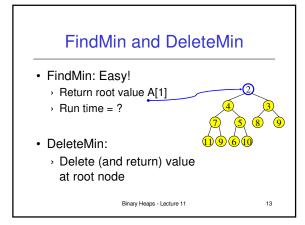
Binary Heaps - Lecture 11

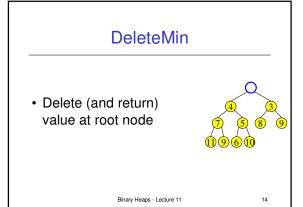
Binary Heap vs Binary Search Tree Binary Heap Binary Search Tree Binary Search Tree Binary Search Tree Parent is less than both left and right children Binary Heaps - Lecture 11 9

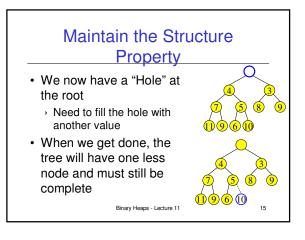


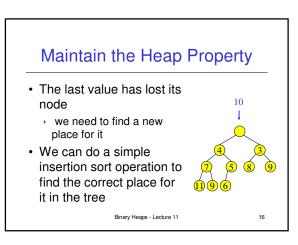


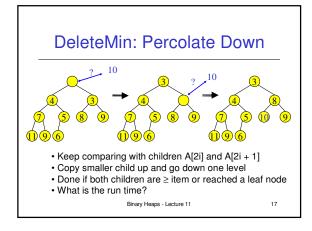












DeleteMin: Run Time Analysis

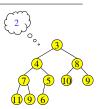
- Run time is O(depth of heap)
- · A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - \rightarrow height = $\lceil \log_2(N) \rceil 1$
- Run time of DeleteMin is O(log N)

Binary Heaps - Lecture 11

19

Insert

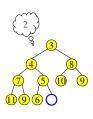
- · Add a value to the tree
- Structure and heap order properties must still be correct when we are done



Binary Heaps - Lecture 11

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

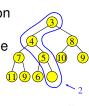


Binary Heaps - Lecture 11

21

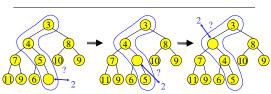
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree



Binary Heaps - Lecture 11

Insert: Percolate Up



- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node A[1]
- Run time?

Binary Heaps - Lecture 11

Insert: Done

• Run time?

Binary Heaps - Lecture 11

24

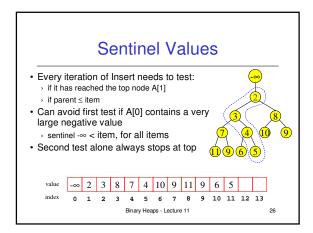
PercUp

- · Class participation
- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
????
}
```

Binary Heaps - Lecture 11

25

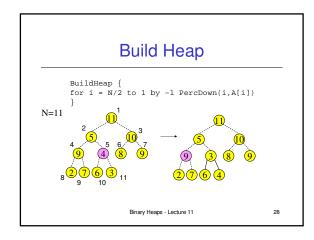


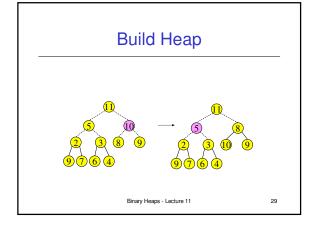
Binary Heap Analysis

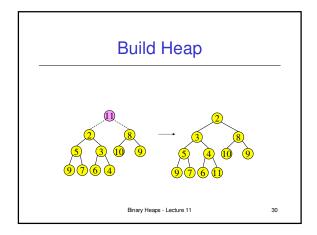
- Space needed for heap of N nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - FindMin: O(1)
 - > DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs : O(N)

Binary Heaps - Lecture 11

27







Analysis of Build Heap

- Assume $N = 2^K 1$
 - > Level 1: k -1 steps for 1 item
 - Level 2: k 2 steps of 2 items
 - > Level 3: k 3 steps for 4 items
 - > Level i : k i steps for 2i-1 items

Total Steps =
$$\sum_{i=1}^{k-1} (k-i) 2^{i-1} = 2^k - k - 1$$

= O(N)

Binary Heaps - Lecture 11

31

Other Heap Operations

- Find(X, H): Find the element X in heap H of N elements
 - What is the running time? O(N)
- FindMax(H): Find the maximum element in H
 - > What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin

Binary Heaps - Lecture 11

00

Other Heap Operations

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ. eg, to increase priority
 - > First, subtract Δ from current value at P
 - > Heap order property may be violated
 - > so percolate up to fix
 - Running Time: O(log N)

Binary Heaps - Lecture 11

33

Other Heap Operations

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ. eq, to decrease priority
 - \rightarrow First, add Δ to current value at P
 - > Heap order property may be violated
 - > so percolate down to fix
 - > Running Time: O(log N)

Binary Heaps - Lecture 11

34

Other Heap Operations

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use DecreaseKey(P,∞,H) followed by DeleteMin
 - > Running Time: O(log N)

Binary Heaps - Lecture 11

35

Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

Binary Heaps - Lecture 11

ecture 11

PercUp Solution

```
PercUp(i : integer, x : integer): {
    if i = 1 then A[1] := x
    else if A[i/2] < x then
        A[i] := x;
        else
        A[i] := A[i/2];
        Percup(i/2,x);
}</pre>
Binary Heaps-Lecture 11 37
```