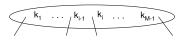
B-Trees

CSE 326 Data Structures Lecture 10

Need for Multi-way Search

- · In very large databases nodes may reside on disk.
- The unit of disk access is a page, 1k, 2k or more bytes.



B-Trees - Lecture 10

Example

- · 1k byte page
- · Key 8 bytes, pointer 4 bytes
- (M-1)8 + 4M = 102412 M = 1032 $M = \lfloor 1032/12 \rfloor = 86$

B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

- A B-Tree of order M has the following properties:

 1. The root is either a leaf or has between 2 and M children.
- 2. All nonleaf nodes (except the root) have between M/2
- and M children.

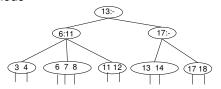
 3. All leaves are at the same depth.

All data records are stored at the leaves. Leaves store between M/2 and M data records Internal nodes only used for searching.

B-Trees - Lecture 10

Example

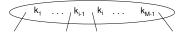
• B-tree of order 3 has 2 or 3 children per node



B-Tree Details

Each (non-leaf) internal node of a B-tree has:

- → Between M/2 and M children.
- \rightarrow up to M-1 keys $k_1 < k_2 < ... < k_{M-1}$



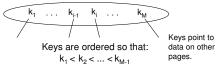
Keys are ordered so that: $k_1 < k_2 < ... < k_{M-1}$

B-Trees - Lecture 10

B-Tree Details

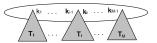
Each leaf node of a B-tree has:

→ Between M/2 and M keys and pointers.



B-Trees - Lecture 10

Properties of B-Trees



Children of each internal node are "between" the items in that node. Suppose subtree T_i is the i-th child of the node:

uppose subtree T_i is the i-th child of the node: all keys in T_i must be between keys k_{i-1} and k_i

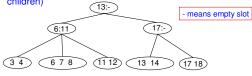
 $\begin{aligned} &i.e. \ k_{i-1} \leq T_i < k_i \\ k_{i-1} \text{ is the smallest key in } T_i \\ &All \text{ keys in first subtree } T_1 < k_1 \\ &All \text{ keys in last subtree } T_M \geq k_{M-1} \end{aligned}$

B-Trees - Lecture 10

Example: Searching in B-trees

B-tree of order 3: also known as 2-3 tree (2 to 3 children)

13:
13:
13:-

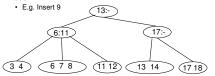


- Examples: Search for 9, 14, 12
- Note: If leaf nodes are connected as a Linked List, Btree is called a B+ tree – Allows sorted list to be accessed easily

B-Trees - Lecture 10

Inserting into B-Trees

- Insert X: Do a Find on X and find appropriate leaf node
 - › If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node

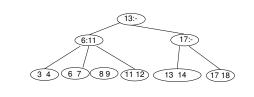


B-Trees - Lecture 10

10

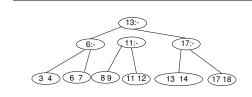
12

Insert Example

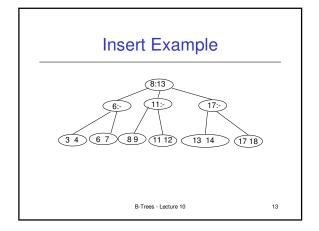


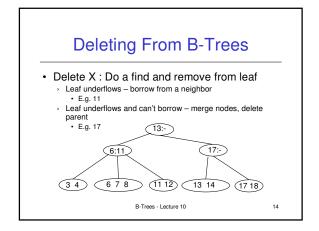
B-Trees - Lecture 10

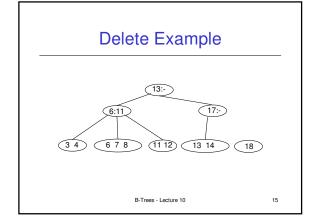
Insert Example

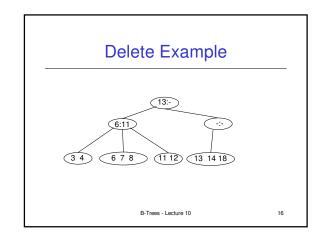


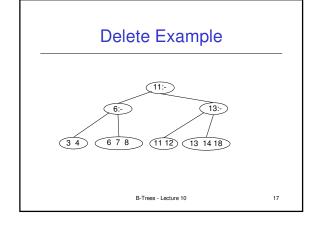
B-Trees - Lecture 10











Run Time Analysis of B-Tree Operations

- For a B-Tree of order M
 - Each internal node has up to M-1 keys to search
 - > Each internal node has between $\lceil M/2 \rceil$ and M children
 - > Depth of B-Tree storing N items is $O(log \lceil_{M/2} \rceil N)$
- Example: M = 86
 - $\log_{43}N = \log_2 N / \log_2 43 = .184 \log_2 N$
 - $\log_{43} 1,000,000,000 = 5.51$

B-Trees - Lecture 10

18

Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow
 - › fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees on average
- Multi-way search trees (e.g. B-Trees): More than two children
 - per node allows shallow trees; all leaves are at the same depth
 - › keeping tree balanced at all times

B-Trees - Lecture 10

10