B-Trees

CSE 326
Data Structures
Lecture 10

Need for Multi-way Search

- In very large databases nodes may reside on disk.
- The unit of disk access is a page, $1 \mathrm{k}, 2 \mathrm{k}$ or more bytes.

Example

- 1k byte page

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

- Key 8 bytes, pointer 4 bytes
- $(\mathrm{M}-1) 8+4 \mathrm{M}=1024$

A B-Tree of order M has the following properties:

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between $\lceil\mathrm{M} / 2\rceil$ and M children
3. All leaves are at the same depth.

All data records are stored at the leaves.
Leaves store between $\lceil\mathrm{M} / 2\rceil$ and M data records. Internal nodes only used for searching

B-Trees - Lecture 10

Example

- B-tree of order 3 has 2 or 3 children per node

B-Trees - Lecture 10

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
, Between $\lceil\mathrm{M} / 2\rceil$ and M children.
, up to M-1 keys $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{M}-1}$

Keys are ordered so that:
$\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{M}-1}$
B-Trees - Lecture 10 6

B-Tree Details

Each leaf node of a B-tree has:

, Between $\lceil M / 2\rceil$ and M keys and pointers.

Properties of B-Trees

Children of each internal node are "between" the items in that node Suppose subtree T_{i} is the i-th child of the node:
all keys in T_{i} must be between keys k_{i-1} and k_{i}

$$
\text { i.e. } \mathrm{k}_{\mathrm{i}-1} \leq \mathrm{T}_{\mathrm{i}}<\mathrm{k}_{\mathrm{i}}
$$

$\mathrm{k}_{\mathrm{i}-1}$ is the smallest key in T_{i}
All keys in first subtree $T_{1}<k_{1}$
All keys in last subtree $T_{M} \geq k_{M-}$

Example: Searching in B-trees

- B-tree of order 3: also known as 2-3 tree (2 to 3

- Examples: Search for $9,14,12$
- Note: If leaf nodes are connected as a Linked List, Btree is called a B+ tree - Allows sorted list to be accessed easily

Inserting into B-Trees

- Insert X: Do a Find on X and find appropriate leaf node

If leaf node is not full, fill in empty slot with X

- E.g. Insert 5
, If leaf node is full, split leaf node and adjust parents up to root node

B-Trees - Lecture 10
10

Run Time Analysis of B-Tree Operations

- For a B-Tree of order M
, Each internal node has up to M-1 keys to search
, Each internal node has between $\lceil M / 2\rceil$ and M children
, Depth of $B-$ Tree storing N items is $\mathrm{O}\left(\log _{\lceil\mathrm{M} / 2} \mathrm{N}\right)$
- Example: $\mathrm{M}=86$
, $\log _{43} \mathrm{~N}=\log _{2} \mathrm{~N} / \log _{2} 43=.184 \log _{2} \mathrm{~N}$
, $\log _{43} 1,000,000,000=5.51$

Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow
, fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees on average
- Multi-way search trees (e.g. B-Trees): More than two children
, per node allows shallow trees; all leaves are at the same depth
, keeping tree balanced at all times

