

Readings and References

- Reading

Chapter 4.1-4.3,

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear data structures
- Information often contains hierarchical relationships
, File directories or folders on your computer
, Moves in a game
, Employee hierarchies in organizations
- Trees support fast searching

More Tree Jargon

- Length of a path = number of edges
- Depth of a node $\mathrm{N}=$ length of path from root to N
- Height of node $N=$ length of longest path from N to a leaf
- Height of tree = height of root
depth $=0$,

Definition and Tree Trivia

- A tree is a set of nodes
- that is an empty set of nodes, or
- has one node called the root from which zero or more trees (subtrees) descend
- A tree with N nodes always has $\mathrm{N}-1$ edges
- Two nodes in a tree have at most one path between them

6

Implementation of Trees

- One possible pointer-based Implementation
, tree nodes with value and a pointer to each child
, but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
, $1^{\text {st }}$ Child / Next Sibling List Representation
, Each node has 2 pointers: one to its first child and one to next sibling
, Can handle arbitrary number of children

Application: Arithmetic

 Expression TreesExample Arithmetic Expression:

$$
A+(B *(C / D))
$$

How would you express this as a tree?

Traversing Trees

- Preorder: Node, then Children recursively
$+A$ * $/$ CD
- Inorder: Left child recursively, Node, Right child recursively (Binary Trees) $A+B * C / D$

11

Trees - Lecture 6

- Postorder: Children recursively, then Node ABCD /* +

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
$A+\left(B^{*}(C / D)\right)$
Tree for the above expression:

- Used in most compilers
- No parenthesis need - use tree structure
- Can speed up calculations e.g. replace
/ node with C / D if C and D are known
- Calculate by traversing tree (how?)

Trees - Lecture 6

Binary Trees

- Every node has at most two children
, Most popular tree in computer science
, Easy to implement, fast in operation
- Given N nodes, what is the minimum height of a binary tree?
, A height h tree has at most $2^{h+1}-1$ nodes
, Hence, a binary tree with N node has height $>\log _{2} N-1$

Upper Bound on Number of

 Nodes- Define N_{h} to be the maximum number of nodes in a binary tree of height h.
- Theorem: $\mathrm{N}_{\mathrm{h}}=2^{\mathrm{h}+1}-1$
- Proof by induction on h.
, $h=0.2^{h+1}-1=1$ and $N_{h}=1$.
, $\mathrm{h}>0$.

$$
\begin{aligned}
N_{h} & =2 N_{h-1}+1 \\
& =2\left(2^{h}-1\right)+1 \\
& =2^{h+1}-1
\end{aligned}
$$

Lower Bound on Height

- Theorem: Any binary tree with N nodes has height $\geq\left\lceil\log _{2} N\right\rceil-1$
- Proof.
- Let T be any binary tree of N nodes and let h be its height.
$N \leq N_{h}<2^{h+1}$
$\log _{2} N<h+1$
$\left\lceil\log _{2} N\right\rceil \leq h+1$
$\left\lceil\log _{2} N\right\rceil-1 \leq h$

Complete Binary Trees

- A complete binary tree of N node is one of minimum height with the maximum depth nodes on the left.

Binary Search Trees

- Binary search trees are binary trees in which
, all values in the node's left subtree are less than node value
, all values in the node's right subtree are greater than node value
- Operations:
, Find, FindMin, FindMax, Insert, Delete

Trees - Lecture 6

Operations on Binary Search

 Trees- How would you implement these?
, Recursive definition of binary search trees allows recursive routines
, Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

Trees - Lecture 6

Find

Find(T : tree pointer, x : element): tree pointer \{ case

1 = null : return null;
T.data $=\mathrm{x}$: return T ;
T.data $>x$: return Find(T.left, x)
I.data < x : return Find(T.right, x)
$\}$
$\}$

- Class Participation
- Design recursive FindMin operation that returns the smallest element in a binary search tree.
, FindMin(T : tree pointer) : tree pointer \{ // precondition: T is not null // ???
\}
+

Insert Done Very Elegantly

Insert (T : reference tree pointer, x : element) : integer $\{$
if $\mathrm{T}=$ null then
T := new tree; T.data := x ; return 1
T.data $=\mathrm{x}$: return 0 ;
T.data > x : return Insert (T.left, x);
T.data $<x$: return Insert (T.right, x)
)

Advantage of reference parameter is that the call has the original pointer not a copy.

Delete Operation

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
, Find 10
, Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
, If it has no children, by NULL
, If it has 1 child, by that child
, If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Delete " 24 " - One child

Delete "10" - two children

FindMin Solution

FindMin(T : tree pointer) : tree pointer \{
// precondition: T is not null //
if T.left = null return T
else return FindMin(T left)
else return FindMin(T.left)
\}

