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Algorithm Performance 

Factors
• Algorithm choices (asymptotic running time)

› O(n2) or O(n log n) …

• Data structure choices

› List or Arrays

• Language and Compiler

› C, C++, Java, Fortran

• Memory performance

› How near is the data to the processor
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Moore’s Law
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Performance on Benchmarks
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Processor-Memory 

Performance Gap
• x86 CPU speed (100x over 10 years)
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Program Model of Memory I

memory
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Program Model of Memory II

Array A[0,9] of integers

A

A + 40 

Record = struct = data object

a.data : double

a.next : pointer or reference

a.data

a.next

A pointer or reference is simply 

an integer that represents a

memory address
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Memory Model vs. Reality

• The program memory model is very simple 
and elegant

• The reality is not.

• Physical memory is organized in a hierarchy. 
› Accessing memory close to the processor is fast

› Accessing memory far from the processor is 
slower

• Caching allows for accessed data to be 
moved closer to the processor.  
› There is a win if that data is accessed again
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Levels in the Memory 

Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-

cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM; 

≈ 10-20 ns 

DRAM; 40-100 ns

a few 

milliseconds
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The Cache

direct mapped cache

memory

Cache hit : data accessed

is in the cache.

Cache miss : data accessed

Is not in the cache
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Memory Blocks

Addressable unit, usually

a byte

Memory block – unit of memory

transferred as a whole from

memory to cache.  Sometimes

called “cache line”. Usually, 32 

64 bytes (but growing in size).

Memory block size usually greater

than word size
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Why Memory Blocks

• Time to transfer x bytes is given by

› T(x) = a + bx.  (a is latency, b ∼ 1/bandwidth)

› Average time per byte is a/x + b

• Because a is large relative to b, it pays to 
transfer more than one byte at a time.

› The hope is that bytes near the accessed byte 

will be accessed soon – good spatial locality.
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Locality

• Spatial locality : addresses near a 

recently accessed byte are accessed 
also.

• Temporal locality : the same address 
that was accessed recently is accessed 

again.
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Examples of Locality

• Good spatial locality
› Quicksort – the array is scanned

• Poor spatial locality
› Binary search – jump around the array 

i               j
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Examples of locality

• Good temporal locality

› For loop index  i in a tight loop.

for i = 1 to n do { …}

• Poor temporal locality

› Repeated long scans that exceed the cache size, 

like in iterative merge sort.

cache size
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Classifying Cache Misses

• Compulsory misses – first time a block is 
accessed
› Can never be avoided

• Capacity misses – data structure does not fit 
in cache 
› Can be avoided by algorithmic design.

• Conflict misses – several accessed blocks 
map to the same location in cache
› Conflict misses are not much of a problem 

because modern caches are set associative.
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Set Associative Cache

Two-way set associative cache

memory

• Two blocks of the cache can hold

blocks from the same parts of memory

• Replacement policy needed.

• Reduces conflict misses
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Cache Misses for Scans

Not in cacheIn cache

1/B misses per access where B is number of access per line
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Repeated Long Scans

Cache size

1st scan

2nd scan

beginning
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Repeated Long Scans

• Have good spatial locality

• Poor temporal locality

• If there are B accesses per memory 

block then 1/B of the accesses are 
cache misses.
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Hardware Prefetching to the 

Rescue

• The hardware keeps track of integer 

variables to see if they are regularly 
incremented (or decremented).

• If so, the anticipated blocks are loaded 
into the cache in parallel with 

computation.
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Prefetching

miss

prefetch

hit
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Hardware Prefetcher

• Simple test to observe the prefetcher’s

effectiveness

• Access every nth byte in main memory

• Array of 40 million bytes, traversed 10 
times

• Expect prefetcher speedup for n ≤ 256
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Prefetching Performance Study
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Cache Friendly Algorithms

• Algorithms with good spatial and 

temporal locality.

› Divide and Conquer is generally good.

• Algorithms with regular scans with short 
stride.

› There is a limit (maybe 8) on the number of 

simultaneous scans that are supported by 

modern hardware.

Memory Performance of Algorithms - Lecture 4 26

Insertion Sort is Prefetch Friendly

• The main loop scans to the right.

• The inner loop scans to the left.
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Mergesort

• Recursive Mergesort has good spatial 

and temporal locality.

• When doing long merges, Mergesort

uses three scans with short strides.
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Recursive Mergesort
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Recursive Mergesort

Cache size
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Merging

Merging is prefetch friendly

As a result iterative mergesort is cache friendly
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Quicksort is Cache Friendly

• It is divide and conquer with good 
temporal and spatial locality.

• It is prefetch friendly with two scans per 
partition.

Small keys Large keys
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Matrices

• A matrix Aij for 1≤ i ≤ m, 1 ≤ j ≤ n with m rows 
and n columns is represented by a two 
dimensional array. A[1..m][1..n] = 
A[1..m,1..n]. 

• Generally 2-d arrays are stored by row.

m

n

…
1..n n+1 .. 2n 2n+1 .. 3n
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Row and Column Scans

…

…

Row Scan

Column Scan

Prefetch friendly

Not prefetch friendly
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Example: All Pairs Shortest Path

• Input
› N cities

› For every pair of cities i, j there may be a 
non-stop flight of cost c(i,j).  

› If there is no flight then the cost c(i,j)=∞
› c(i,i) = 0

• Output c*(i,j) = shortest path from i to j
=

where i =i0 , j = im

)}i,c(i)i,c(i)i,min{c(i m1m2110 −+++ L
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Floyd-Warshall Algorithm

C* := C
for k = 1 to n

for i = 1 to n
for j = 1 to n

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

j scans in the inner loop.
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 44

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k
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Floyd-Warshall Algorithm

By Column

C* := C
for k = 1 to n

for j = 1 to n
for i = 1 to n

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

Switch the order in two inner loops.
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

k j
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Floyd-Warshall Algorithm
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Floyd-Warshall Algorithm
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Summary

• Good spatial and temporal locality and 

scans with short strides reduce cache 
misses and improve performance in 

modern computers.

• Warning: These are only constant time 

speed-ups.  Asymptotic speeds-up by 

better algorithms are usually a bigger 
win.


