Memory Performance of
Algorithms

CSE 326
Data Structures
Lecture 4

Algorithm Performance
Factors

Algorithm choices (asymptotic running time)
> O(n?) orO(nlogn) ...

Data structure choices

> List or Arrays

Language and Compiler

> G, C++, Java, Fortran

Memory performance

> How near is the data to the processor
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Processor-Memory
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Program Model of Memory |
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Program Model of Memory |l

Array A[0,9] of integers Record = struct = data object
a.data : double
A a.next : pointer or reference

a.data

a.next

A pointer or reference is simply
an integer that represents a
memory address

A +40
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Memory Model vs. Reality

» The program memory model is very simple
and elegant

* The reality is not.

» Physical memory is organized in a hierarchy.
> Accessing memory close to the processor is fast

> Accessing memory far from the processor is
slower

» Caching allows for accessed data to be
moved closer to the processor.
> There is a win if that data is accessed again
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Levels in the Memory
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

SRAM; a few ns

SRAM/DRAM;
=10-20 ns
DRAM; 40-100 ns Main memory; up to 10GB

afew Secondary memory; many GB

milliseconds

Archival storage
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The Cache

memory

direct mapped cache

/ III/
N

Cache hit : data accessed
is in the cache.

Cache miss : data accessed
Is not in the cache
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Memory Blocks

[] Addressable unit, usually
a byte

(ITTTTTIT]

Memory block — unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line”. Usually, 32
64 bytes (but growing in size).
Memory block size usually greater
than word size
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Why Memory Blocks

» Time to transfer x bytes is given by
> T(x) = a + bx. (ais latency, b 0 1/bandwidth)
> Average time per byte is a/x + b

» Because a is large relative to b, it pays to
transfer more than one byte at a time.

> The hope is that bytes near the accessed byte
will be accessed soon — good spatial locality.
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Locality

+ Spatial locality : addresses near a
recently accessed byte are accessed
also.

« Temporal locality : the same address
that was accessed recently is accessed
again.
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Examples of Locality

» Good spatial locality
> Quicksort — the array is scanned

i j———
\ |
» Poor spatial locality
> Binary search — jump around the array

Y
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Examples of locality

» Good temporal locality
> For loop index i in a tight loop.

fori=1tondo{...}

» Poor temporal locality

> Repeated long scans that exceed the cache size,
like in iterative merge sort.

\
[ ] cachesize
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Classifying Cache Misses

» Compulsory misses — first time a block is
accessed
> Can never be avoided

» Capacity misses — data structure does not fit
in cache
> Can be avoided by algorithmic design.

« Conflict misses — several accessed blocks
map to the same location in cache

> Conflict misses are not much of a problem
because modern caches are set associative.

>
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Set Associative Cache

memory

EEEEEEEN
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Two-way set associative cache

S e

« Two blocks of the cache can hold
blocks from the same parts of memory

» Replacement policy needed. M

* Reduces conflict misses
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Cache Misses for Scans

In cache [EIEEN| Not in cache HEEN

I

1/B misses per access where B is number of access per line
8
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Repeated Long Scans

[ Cachesize

N
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1st scan
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beginning
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Repeated Long Scans

» Have good spatial locality
» Poor temporal locality

« If there are B accesses per memory
block then 1/B of the accesses are
cache misses.
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Hardware Prefetching to the
Rescue

» The hardware keeps track of integer
variables to see if they are regularly
incremented (or decremented).

+ If so, the anticipated blocks are loaded
into the cache in parallel with
computation.
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Prefetching

miss
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Hardware Prefetcher

» Simple test to observe the prefetcher’s
effectiveness

« Access every nt byte in main memory

* Array of 40 million bytes, traversed 10
times

» Expect prefetcher speedup for n <256
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Prefetching Performance Study

Normalized Running Time

Stiide Length
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Cache Friendly Algorithms

« Algorithms with good spatial and
temporal locality.
> Divide and Conquer is generally good.

« Algorithms with regular scans with short
stride.

> There is a limit (maybe 8) on the number of
simultaneous scans that are supported by
modern hardware.
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Insertion Sort is Prefetch Friendly

—1— |

« The main loop scans to the right.
« The inner loop scans to the left.
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Mergesort

* Recursive Mergesort has good spatial
and temporal locality.

* When doing long merges, Mergesort
uses three scans with short strides.
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Recursive Mergesort
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Recursive Mergesort
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Merging

Merging is prefetch friendly
As a result iterative mergesort is cache friendly
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Quicksort is Cache Friendly

« ltis divide and conquer with good
temporal and spatial locality.

« It is prefetch friendly with two scans per
partition.

Small keys Large keys
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Matrices

* A matrix Aijfor 1<i<m,1<j<nwith mrows
and n columns is represented by a two
dimensional array. A[1..m][1..n] =
A[1.m,1..n].

» Generally 2-d arrays are stored by row.

n

1.n n+1..2n 2n+1..3n
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Row and Column Scans

Example: All Pairs Shortest Path

— .
Row Scan Prefetch friendly
Column Scan Not prefetch friendly
T T T ] ..
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* Input
> N cities
> For every pair of cities i, j there may be a
non-stop flight of cost c(i,j).

> If there is no flight then the cost c(i,j)=
> ¢(i,i)=0
» QOutput c*(i,j) = shortest path fromi to |
=min{c(iori1)+c(i1ri2)+"‘+C(im—1rim)}
where i =iy, j =g
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Floyd-Warshall Algorithm

C*:=C
fork=1ton
fori=1ton
forj=1ton
C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

j scans in the inner loop.
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C*[i,j]l = min(C*[i,j], C*[i,k] + C*[k,j])

k
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C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k
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C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

k
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C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k
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C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k
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C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k
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C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k
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C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

e

Floyd-Warshall Algorithm
By Column

C*:=C
fork=1ton
forj=1ton
fori=1ton
C™i,j] = min(C*i,jl, C*[i,k] + C*[k,j])

Switch the order in two inner loops.
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C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])
k i
k ﬂ
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Floyd-Warshall Algorithm
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Floyd-Warshall Algorithm

Normalize time
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Prefetching+ -+ Column
Spacial locality + Row
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Summary

Good spatial and temporal locality and
scans with short strides reduce cache
misses and improve performance in
modern computers.

Warning: These are only constant time
speed-ups. Asymptotic speeds-up by
better algorithms are usually a bigger
win.
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