
1

Memory Performance of

Algorithms

CSE 326

Data Structures

Lecture 4

Memory Performance of Algorithms - Lecture 4 2

Algorithm Performance

Factors
• Algorithm choices (asymptotic running time)

› O(n2) or O(n log n) …

• Data structure choices

› List or Arrays

• Language and Compiler

› C, C++, Java, Fortran

• Memory performance

› How near is the data to the processor

Memory Performance of Algorithms - Lecture 4 3

Moore’s Law

Memory Performance of Algorithms - Lecture 4 4

Performance on Benchmarks

Memory Performance of Algorithms - Lecture 4 5

Processor-Memory

Performance Gap
• x86 CPU speed (100x over 10 years)

10

100

1000

1

89 91 93 95 97 99 01

“Memory gap”

“Memory wall”

x x

x
x x

x

o

o

o

o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

Memory Performance of Algorithms - Lecture 4 6

Program Model of Memory I

memory

Character

Integer

Double

32 bit = 4 byte

words

0

4

8

12

16

20

24

28

32

36

40

address

2

Memory Performance of Algorithms - Lecture 4 7

Program Model of Memory II

Array A[0,9] of integers

A

A + 40

Record = struct = data object

a.data : double

a.next : pointer or reference

a.data

a.next

A pointer or reference is simply

an integer that represents a

memory address

Memory Performance of Algorithms - Lecture 4 8

Memory Model vs. Reality

• The program memory model is very simple
and elegant

• The reality is not.

• Physical memory is organized in a hierarchy.
› Accessing memory close to the processor is fast

› Accessing memory far from the processor is
slower

• Caching allows for accessed data to be
moved closer to the processor.
› There is a win if that data is accessed again

Memory Performance of Algorithms - Lecture 4 9

Levels in the Memory

Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-

cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM;

≈ 10-20 ns

DRAM; 40-100 ns

a few

milliseconds

Memory Performance of Algorithms - Lecture 4 10

The Cache

direct mapped cache

memory

Cache hit : data accessed

is in the cache.

Cache miss : data accessed

Is not in the cache

Memory Performance of Algorithms - Lecture 4 11

Memory Blocks

Addressable unit, usually

a byte

Memory block – unit of memory

transferred as a whole from

memory to cache. Sometimes

called “cache line”. Usually, 32

64 bytes (but growing in size).

Memory block size usually greater

than word size

Memory Performance of Algorithms - Lecture 4 12

Why Memory Blocks

• Time to transfer x bytes is given by

› T(x) = a + bx. (a is latency, b ∼ 1/bandwidth)

› Average time per byte is a/x + b

• Because a is large relative to b, it pays to
transfer more than one byte at a time.

› The hope is that bytes near the accessed byte

will be accessed soon – good spatial locality.

3

Memory Performance of Algorithms - Lecture 4 13

Locality

• Spatial locality : addresses near a

recently accessed byte are accessed
also.

• Temporal locality : the same address
that was accessed recently is accessed

again.

Memory Performance of Algorithms - Lecture 4 14

Examples of Locality

• Good spatial locality
› Quicksort – the array is scanned

• Poor spatial locality
› Binary search – jump around the array

i j

Memory Performance of Algorithms - Lecture 4 15

Examples of locality

• Good temporal locality

› For loop index i in a tight loop.

for i = 1 to n do { …}

• Poor temporal locality

› Repeated long scans that exceed the cache size,

like in iterative merge sort.

cache size

Memory Performance of Algorithms - Lecture 4 16

Classifying Cache Misses

• Compulsory misses – first time a block is
accessed
› Can never be avoided

• Capacity misses – data structure does not fit
in cache
› Can be avoided by algorithmic design.

• Conflict misses – several accessed blocks
map to the same location in cache
› Conflict misses are not much of a problem

because modern caches are set associative.

Memory Performance of Algorithms - Lecture 4 17

Set Associative Cache

Two-way set associative cache

memory

• Two blocks of the cache can hold

blocks from the same parts of memory

• Replacement policy needed.

• Reduces conflict misses
Memory Performance of Algorithms - Lecture 4 18

Cache Misses for Scans

Not in cacheIn cache

1/B misses per access where B is number of access per line

4

Memory Performance of Algorithms - Lecture 4 19

Repeated Long Scans

Cache size

1st scan

2nd scan

beginning

Memory Performance of Algorithms - Lecture 4 20

Repeated Long Scans

• Have good spatial locality

• Poor temporal locality

• If there are B accesses per memory

block then 1/B of the accesses are
cache misses.

Memory Performance of Algorithms - Lecture 4 21

Hardware Prefetching to the

Rescue

• The hardware keeps track of integer

variables to see if they are regularly
incremented (or decremented).

• If so, the anticipated blocks are loaded
into the cache in parallel with

computation.

Memory Performance of Algorithms - Lecture 4 22

Prefetching

miss

prefetch

hit

Memory Performance of Algorithms - Lecture 4 23

Hardware Prefetcher

• Simple test to observe the prefetcher’s

effectiveness

• Access every nth byte in main memory

• Array of 40 million bytes, traversed 10
times

• Expect prefetcher speedup for n ≤ 256

Memory Performance of Algorithms - Lecture 4 24

Prefetching Performance Study

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Stride Length

Prefetcher Enabled
Prefetcher Disabled

5

Memory Performance of Algorithms - Lecture 4 25

Cache Friendly Algorithms

• Algorithms with good spatial and

temporal locality.

› Divide and Conquer is generally good.

• Algorithms with regular scans with short
stride.

› There is a limit (maybe 8) on the number of

simultaneous scans that are supported by

modern hardware.

Memory Performance of Algorithms - Lecture 4 26

Insertion Sort is Prefetch Friendly

• The main loop scans to the right.

• The inner loop scans to the left.

Memory Performance of Algorithms - Lecture 4 27

Mergesort

• Recursive Mergesort has good spatial

and temporal locality.

• When doing long merges, Mergesort

uses three scans with short strides.

Memory Performance of Algorithms - Lecture 4 28

Recursive Mergesort

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

8 2 9 4 5 3 1 6

1 2

3

4 5

6

7

Memory Performance of Algorithms - Lecture 4 29

Recursive Mergesort

Cache size

Memory Performance of Algorithms - Lecture 4 30

Merging

Merging is prefetch friendly

As a result iterative mergesort is cache friendly

6

Memory Performance of Algorithms - Lecture 4 31

Quicksort is Cache Friendly

• It is divide and conquer with good
temporal and spatial locality.

• It is prefetch friendly with two scans per
partition.

Small keys Large keys

Memory Performance of Algorithms - Lecture 4 32

Matrices

• A matrix Aij for 1≤ i ≤ m, 1 ≤ j ≤ n with m rows
and n columns is represented by a two
dimensional array. A[1..m][1..n] =
A[1..m,1..n].

• Generally 2-d arrays are stored by row.

m

n

…
1..n n+1 .. 2n 2n+1 .. 3n

Memory Performance of Algorithms - Lecture 4 33

Row and Column Scans

…

…

Row Scan

Column Scan

Prefetch friendly

Not prefetch friendly

Memory Performance of Algorithms - Lecture 4 34

Example: All Pairs Shortest Path

• Input
› N cities

› For every pair of cities i, j there may be a
non-stop flight of cost c(i,j).

› If there is no flight then the cost c(i,j)=∞
› c(i,i) = 0

• Output c*(i,j) = shortest path from i to j
=

where i =i0 , j = im

)}i,c(i)i,c(i)i,min{c(i m1m2110 −+++ L

Memory Performance of Algorithms - Lecture 4 35

Floyd-Warshall Algorithm

C* := C
for k = 1 to n

for i = 1 to n
for j = 1 to n

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

j scans in the inner loop.

Memory Performance of Algorithms - Lecture 4 36

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

7

Memory Performance of Algorithms - Lecture 4 37

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 38

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 39

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 40

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 41

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 42

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

8

Memory Performance of Algorithms - Lecture 4 43

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 44

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

i

k

Memory Performance of Algorithms - Lecture 4 45

Floyd-Warshall Algorithm

By Column

C* := C
for k = 1 to n

for j = 1 to n
for i = 1 to n

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

Switch the order in two inner loops.

Memory Performance of Algorithms - Lecture 4 46

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

k j

Memory Performance of Algorithms - Lecture 4 47

Floyd-Warshall Algorithm

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

7.00E-08

8.00E-08

9.00E-08

128 256 512 1024 2048 4096

Matrix size

N
o

rm
a

li
z
e
 t

im
e

Column

Row

Normalize time = time/N3

Memory Performance of Algorithms - Lecture 4 48

Floyd-Warshall Algorithm

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

7.00E-08

8.00E-08

9.00E-08

128 256 512 1024 2048 4096

Matrix size

N
o

rm
a

li
z
e
 t

im
e

Column

Row

Spatial locality Prefetching +

Spacial locality

9

Memory Performance of Algorithms - Lecture 4 49

Summary

• Good spatial and temporal locality and

scans with short strides reduce cache
misses and improve performance in

modern computers.

• Warning: These are only constant time

speed-ups. Asymptotic speeds-up by

better algorithms are usually a bigger
win.

