Memory Performance of
Algorithms

CSE 326
Data Structures
Lecture 4

Algorithm Performance
Factors

Algorithm choices (asymptotic running time)
> O(n?) orO(nlogn) ...

Data structure choices

> List or Arrays

Language and Compiler

> G, C++, Java, Fortran

Memory performance

> How near is the data to the processor

Memory Performance of Algorithms - Lecture 4 2

1,000,000

[Fo000.000

Moore’s Law

100,000

Intel CPU Trends /

(sourdes: Inte], Wikipedia, I Olukotun) | *
T S
=
10000

el el
3 ; -114__
&

1970 1975 1980 1985 1990 1995 2000 2005 2010

Memory Performance of Algorithms - Lecture 4

Performance on Benchmarks

SPECo2

1987

Memory Performance of Algorithms - Lecture 4 4

Processor-Memory
Performance Gap

+ x86 CPU speed (100x over 10 years)

1000) Pentium IV
. I’enlium[l[/
Pentium Pro
) I “Memory wall”
Pentium
100)
386/ “Memory g(\p‘i l
0 ﬁ/?’r——l—‘r’
1
89 91 93 9 97 9 0l

Memory Performance of Algorithms - Lecture 4

Program Model of Memory |

address MmO

0
4 32 bit = 4 byte
Character [] 8 words

12

imeger [T 1| i6

20
28
32

36
40

Memory Performance of Algorithms - Lecture 4 6

Program Model of Memory |l

Array A[0,9] of integers Record = struct = data object
a.data : double
A a.next : pointer or reference

a.data

a.next

A pointer or reference is simply
an integer that represents a
memory address

A +40

Memory Performance of Algorithms - Lecture 4 7

Memory Model vs. Reality

» The program memory model is very simple
and elegant

* The reality is not.

» Physical memory is organized in a hierarchy.
> Accessing memory close to the processor is fast

> Accessing memory far from the processor is
slower

» Caching allows for accessed data to be
moved closer to the processor.
> There is a win if that data is accessed again

Memory Performance of Algorithms - Lecture 4 8

Levels in the Memory
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

SRAM; a few ns

SRAM/DRAM;
=10-20 ns
DRAM; 40-100 ns Main memory; up to 10GB

afew Secondary memory; many GB

milliseconds

Archival storage

Memory Performance of Algorithms - Lecture 4 9

The Cache

memory

direct mapped cache

/ III/
N

Cache hit : data accessed
is in the cache.

Cache miss : data accessed
Is not in the cache

Memory Performance of Algorithms - Lecture 4 10

Memory Blocks

[] Addressable unit, usually
a byte

(ITTTTTIT]

Memory block — unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line”. Usually, 32
64 bytes (but growing in size).
Memory block size usually greater
than word size

Memory Performance of Algorithms - Lecture 4 1

Why Memory Blocks

» Time to transfer x bytes is given by
> T(x) = a + bx. (ais latency, b 0 1/bandwidth)
> Average time per byte is a/x + b

» Because a is large relative to b, it pays to
transfer more than one byte at a time.

> The hope is that bytes near the accessed byte
will be accessed soon — good spatial locality.

Memory Performance of Algorithms - Lecture 4 12

Locality

+ Spatial locality : addresses near a
recently accessed byte are accessed
also.

« Temporal locality : the same address
that was accessed recently is accessed
again.

Memory Performance of Algorithms - Lecture 4 13

Examples of Locality

» Good spatial locality
> Quicksort — the array is scanned

i j———
\ |
» Poor spatial locality
> Binary search — jump around the array

Y

=

Memory Performance of Algorithms - Lecture 4

Examples of locality

» Good temporal locality
> For loop index i in a tight loop.

fori=1tondo{...}

» Poor temporal locality

> Repeated long scans that exceed the cache size,
like in iterative merge sort.

\
[] cachesize

Memory Performance of Algorithms - Lecture 4 15

Classifying Cache Misses

» Compulsory misses — first time a block is
accessed
> Can never be avoided

» Capacity misses — data structure does not fit
in cache
> Can be avoided by algorithmic design.

« Conflict misses — several accessed blocks
map to the same location in cache

> Conflict misses are not much of a problem
because modern caches are set associative.

>

Memory Performance of Algorithms - Lecture 4

Set Associative Cache

memory

EEEEEEEN
e e

Two-way set associative cache

S e

« Two blocks of the cache can hold
blocks from the same parts of memory

» Replacement policy needed. M

* Reduces conflict misses
Memory Performance of Algorithms - Lecture 4 17

Cache Misses for Scans

In cache [EIEEN| Not in cache HEEN

I

1/B misses per access where B is number of access per line
8

Memory Performance of Algorithms - Lecture 4

Repeated Long Scans

[Cachesize

N
[E—]
- .
I
1st scan
[E —]
N]
—
=] 21 scan
beginning
Memory Performance of Algorithms - Lecture 4 19

Repeated Long Scans

» Have good spatial locality
» Poor temporal locality

« If there are B accesses per memory
block then 1/B of the accesses are
cache misses.

Memory Performance of Algorithms - Lecture 4 20

Hardware Prefetching to the
Rescue

» The hardware keeps track of integer
variables to see if they are regularly
incremented (or decremented).

+ If so, the anticipated blocks are loaded
into the cache in parallel with
computation.

Memory Performance of Algorithms - Lecture 4 21

Prefetching

miss

Memory Performance of Algorithms - Lecture 4

(LT e [T T T T I
\
(T e [T T T T T IITT]
|
(T e [T P T
pfh{ :
(T e 11 T T P e e
\

Hardware Prefetcher

» Simple test to observe the prefetcher’s
effectiveness

« Access every nt byte in main memory

* Array of 40 million bytes, traversed 10
times

» Expect prefetcher speedup for n <256

Memory Performance of Algorithms - Lecture 4 23

Prefetching Performance Study

Normalized Running Time

Stiide Length
Memory Performance of Algorithms - Lecture 4

24

Cache Friendly Algorithms

« Algorithms with good spatial and
temporal locality.
> Divide and Conquer is generally good.

« Algorithms with regular scans with short
stride.

> There is a limit (maybe 8) on the number of
simultaneous scans that are supported by
modern hardware.

Memory Performance of Algorithms - Lecture 4 25

Insertion Sort is Prefetch Friendly

—1— |

« The main loop scans to the right.
« The inner loop scans to the left.

Memory Performance of Algorithms - Lecture 4 2

Mergesort

* Recursive Mergesort has good spatial
and temporal locality.

* When doing long merges, Mergesort
uses three scans with short strides.

Memory Performance of Algorithms - Lecture 4 27

Recursive Mergesort

[(8[2]9f4]s[3]1]6]

— —_—
829 4 5316
— T P
8 2 9 4 53 16
P N\ 7\ N
&\‘/; 2\../é §\‘./3 l\../é
\
31, 7% o 135 6[6]

=
12345689

Memory Performance of Algorithms - Lecture 4 28

Recursive Mergesort

I T T O [PETTT]
CPERITTITTITTITTITTITT |1 11111
EEATTITTITTITTITITT |1 [P
[PETTTTTITTTTITT | [I |
[PEITTTTITTT] | I [|
[e s I N I i b
s m— I I I I I D f]
[PEITTTTT |]
[IcCachesize

Memory Performance of Algorithms - Lecture 4 29

Merging

Merging is prefetch friendly
As a result iterative mergesort is cache friendly

Memory Performance of Algorithms - Lecture 4 30

Quicksort is Cache Friendly

« ltis divide and conquer with good
temporal and spatial locality.

« It is prefetch friendly with two scans per
partition.

Small keys Large keys
Memory Performance of Algorithms - Lecture 4 31

Matrices

* A matrix Aijfor 1<i<m,1<j<nwith mrows
and n columns is represented by a two
dimensional array. A[1..m][1..n] =
A[1.m,1..n].

» Generally 2-d arrays are stored by row.

n

1.n n+1..2n 2n+1..3n

Memory Performance of Algorithms - Lecture 4 32

Row and Column Scans

Example: All Pairs Shortest Path

— .
Row Scan Prefetch friendly
Column Scan Not prefetch friendly
T T T] ..
Memory Performance of Algorithms - Lecture 4 33

* Input
> N cities
> For every pair of cities i, j there may be a
non-stop flight of cost c(i,j).

> If there is no flight then the cost c(i,j)=
> ¢(i,i)=0
» QOutput c*(i,j) = shortest path fromi to |
=min{c(iori1)+c(i1ri2)+"‘+C(im—1rim)}
where i =iy, j =g

Memory Performance of Algorithms - Lecture 4 34

Floyd-Warshall Algorithm

C*:=C
fork=1ton
fori=1ton
forj=1ton
C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

j scans in the inner loop.

Memory Performance of Algorithms - Lecture 4 35

C*[i,j]l = min(C*[i,j], C*[i,k] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 36

C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 37

C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 38

C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 39

C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 40

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 41

C*[i,j] = min(C*[i,j], C*[i,k] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 42

C*[i,j] = min(C*[i,j], C*[i,K] + C*[k,j])

k

Memory Performance of Algorithms - Lecture 4 43

C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])

e

Floyd-Warshall Algorithm
By Column

C*:=C
fork=1ton
forj=1ton
fori=1ton
C™i,j] = min(C*i,jl, C*[i,k] + C*[k,j])

Switch the order in two inner loops.

Memory Performance of Algorithms - Lecture 4 45

Memory Performance of Algorithms - Lecture 4 44
*r: ot . *r: ot >t * .
C*[i,jl = min(C*[i,j], C*[i,k] + C*[k,j])
k i
k ﬂ
Memory Performance of Algorithms - Lecture 4 46

Floyd-Warshall Algorithm

9.00E-08
8.00E-08
7.00E-08
6.00E-08
5.00E-08
4.00E-08
3.00E-08
2.00E-08
1.00E-08 —— —
0.00E+00 T T T T T

128 256 512 1024 2048 4096
Normalize time = time/N?®

Normalize time

Matrix size

Memory Performance of Algorithms - Lecture 4 47

Floyd-Warshall Algorithm

Normalize time

9.00E-08
8.00E-08
7.00E-08 I
6.00E-08 [1

5.00E-08 Spatiattocatity
4.00E-08 I’

3.00E-08
2.00E-08 "_’1’_"/‘
1.00E-08 — —
0.00E+00 T T T T T
128 256 512 1024 2048 4096
Matrix size

Memory Performance of Algorithms - Lecture 4

Prefetching+ -+ Column
Spacial locality + Row

48

Summary

Good spatial and temporal locality and
scans with short strides reduce cache
misses and improve performance in
modern computers.

Warning: These are only constant time
speed-ups. Asymptotic speeds-up by
better algorithms are usually a bigger
win.

Memory Performance of Algorithms - Lecture 4

49

