
1

Fundamentals

CSE 326

Data Structures

Lecture 2

Fundamentals - Lecture 2 2

Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations

Fundamentals - Lecture 2 3

Powers of 2

• Many of the numbers we use will be powers

of 2

• Binary numbers (base 2) are easily

represented in digital computers

› each "bit" is a 0 or a 1

› 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, …

› an n-bit wide field can hold 2n positive integers:

• 0 ≤ k ≤ 2n-1

Fundamentals - Lecture 2 4

Unsigned binary numbers

• Each bit position represents a power of 2

• For unsigned numbers in a fixed width field

› the minimum value is 0

› the maximum value is 2n-1, where n is the number
of bits in the field

• Fixed field widths determine many limits

› 5 bits = 32 possible values (25 = 32)

› 10 bits = 1024 possible values (210 = 1024)

Fundamentals - Lecture 2 5

Binary and Decimal

2
0
=

1

2
1
=

2

2
2
=

4

2
3
=

8

2
4
=

1
6

2
5
=

3
2

2
6
=

6
4

2
7
=

1
2
8

2
8
=

2
5
6

Decimal 10

1 1 3

1 0 0 1 9

1 0 1 0 10

1 1 1 1 15

0 0 0 0 161

1 1 1 1 311

1 1 1 1 127111

1 1 1 1 2551111

Fundamentals - Lecture 2 6

Logs and exponents

• Definition: log2 x = y means x = 2y

› the log of x, base 2, is the value y that gives x
= 2y

› 8 = 23, so log28 = 3

› 65536= 216, so log265536 = 16

• Notice that log2x tells you how many bits
are needed to hold x values
› 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255

› log2256 = 8

2

2x and log2x

x = 0:.1:4
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

2x and log2x

x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

Fundamentals - Lecture 2 9

Floor and Ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

 2232.722.7 =−=−=

 2222.332.3 =−=−=

Fundamentals - Lecture 2 10

Facts about Floor and Ceiling

 integer an is n ifnn/2n/23.

1XXX2.

XX1X1.

=+
+<≤

≤<−

Fundamentals - Lecture 2 11

Example: log2x and tree depth

• 7 items in a binary tree, 3 = log27+1 levels

4

2 6

5 71 3

Fundamentals - Lecture 2 12

Properties of logs (of the

mathematical kind)
• We will assume logs to base 2 unless

specified otherwise

• log AB = log A + log B

• Proof:

› A=2log
2
A and B=2log

2
B

› AB = 2log
2
A • 2log

2
B = 2log

2
A+log

2
B

› so log2AB = log2A + log2B

› note: log AB ≠≠≠≠ log A•log B

3

Fundamentals - Lecture 2 13

Other log properties

• log A/B = log A – log B

• log (AB) = B log A

• log log X < log X < X for all X > 0

› log log X = Y means

› log X grows slower than X

• called a “sub-linear” function

X2
Y2 =

Fundamentals - Lecture 2 14

A log is a log is a log

• Any base x log is equivalent to base 2 log

within a constant factor

xlog

Blog
Blog

BlogBlogxlog

22

2)(2

Bx

BlogBlog

2

2
x

2x2

BlogBlogxlog

BlogBlogxlog

Blog

xx

2x2

2x2

x

=

=
=

=

=

=

xlog

Blog

2

2

2x

2B

=

=

Fundamentals - Lecture 2 15

Arithmetic Series

•

• The sum is

› S(1) = 1

› S(2) = 1+2 = 3

› S(3) = 1+2+3 = 6

•

∑
=

=+++=
N

1i

iN21S(N) K

∑
=

+=
N

1i 2

1)N(N
i Why is this formula useful?

Fundamentals - Lecture 2 16

Algorithm Analysis

• Consider the following program

segment:
x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at the end?

Fundamentals - Lecture 2 17

Analyzing the Loop

• Total number of times x is incremented
is executed =

• Congratulations - You’ve just analyzed
your first program!
› Running time of the program is proportional

to N(N+1)/2 for all N

› O(N2)

∑
=

+==+++
N

1i 2

1)N(N
i...321

Fundamentals - Lecture 2 18

Other Important Series

• Sum of squares:

• Sum of exponents:

• Geometric series:

N largefor
36

)12)(1(
3

1

2 NNNN
i

N

i

≈++=∑
=

-1k and N largefor
|1|

1

1

≠
+

≈
+

=
∑

k

N
i

kN

i

k

1

11

0 −
−=

+

=
∑

A

A
A

NN

i

i

4

Fundamentals - Lecture 2 19

Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations

Fundamentals - Lecture 2 20

Motivation for Algorithm

Analysis
• Suppose you are

given two algorithms

A and B for solving a

problem

• The running times

TA(N) and TB(N) of A

and B as a function of

input size N are given

TA

TB

R
u

n
 T

im
e

Input Size N

Which is better?

Fundamentals - Lecture 2 21

More Motivation

• For large N, the running time of A and B
is:

Now which

algorithm would

you choose?R
u

n
 T

im
e

Input Size N

TA(N) = 50N

TB(N) = N2

Fundamentals - Lecture 2 22

Asymptotic Behavior

• Asymptotic behavior refers to what
happens as as N → ∞, regardless of
what happens for small N

• Performance for small input sizes may
matter in practice, if you are sure that
small N will be common forever

• We will compare algorithms based on
how they scale for large values of N

Fundamentals - Lecture 2 23

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

Fundamentals - Lecture 2 24

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

5

Fundamentals - Lecture 2 25

Which Function Grows Faster?

n0.1 log nvs.

Fundamentals - Lecture 2 26

Which Function Grows Faster?

n0.1 log nvs.

Fundamentals - Lecture 2 27

Which Function Grows Faster?

5n5 n!vs.

Fundamentals - Lecture 2 28

Which Function Grows Faster?

5n5 n!vs.

Fundamentals - Lecture 2 29

Order Notation

• Mainly used to express upper bounds on time

of algorithms. “n” is the size of the input.

• Examples

› 3n3+57n2+34=O(n3)

› 10000n + 10 n log2 n = O(n log n)

› .00001 n2 ≠ O(n log n)

• Order notation ignores constant factors and
low order terms.

Fundamentals - Lecture 2 30

Big-O

• Def: f(n) = O(g(n)) if there exists

positive constants c and n0 such that for

all N > n0, f(N) ≤ cg(N).

• In other words, for large enough n, g is
always larger than f.

• So g is an upper bound. (f could be
much smaller than g.)

6

Fundamentals - Lecture 2 31

• Eliminate

low order
terms

• Eliminate
constant

coefficients

3 2 2

8

3 2

8

3 2

8

3 2

8 8

3 3 2

8 8

3 2

8

3

8

3

8

3

8

3

16 log (10) 100

16 log (10)

log (10)

log (10) log ()

log (10) log ()

log ()

2log ()

log ()

log (2) log()

log()

n n n

n n

n n

n n

n n n

n n

n n

n n

n n

n n

+

⇒

⇒

 ⇒ +

⇒ +

⇒

⇒

⇒

⇒

⇒

3 2 2 3

816 log (10) 100 (log())n n n O n n+ =

Fundamentals - Lecture 2 32

Some Basic Time Bounds

• Constant time is O(1)

• Logarithmic time is O(log n)

• Linear time is O(n)

• Quadratic time is 0(n2)

• Cubic time is O(n3)

• Polynomial time is O(nk) for some k.

• Exponential time is O(cn) for some c > 1.

Fundamentals - Lecture 2 33

Other asymptotics

• Big-Omega: f(n) = Ω(g(n))

› f(n) > c g(n) for some c > 0 & large enough n.

• Big-Theta: f(n) = Θ(g(n))

› f(n) = O(g(n)) and f(n) = Ω(g(n))

• Little-O: f(n) = o(g(n))

› For all c > 0 there is nc such that for all n > nc,
f(n) < c g(n)

› Limit formulation: 0f(n)/g(n)limn =∞→

Fundamentals - Lecture 2 34

Conventions of Order Notation

=
=

=
+

+

=

=

=

2 2

2 2 3

2 2

Order notation is not symmetric: write

but never

The expression (()) (()) is equivalent to

() (())

The right-hand side is a "cruder" version of the le

2 ()

18 (

()

) (

t

2

)

f :

n n O n

O f

n O n

O n n n

n O g n

f n O g n

O n

= Ω = Ω Ω
=

=2 218 () (lo)

2)

)

(

g (

n

n n n n n

O

Fundamentals - Lecture 2 35

Kinds of Analysis

• Asymptotic – uses order notation, ignores constant
factors and low order terms.

• Upper bound vs. lower bound

• Worst case – time bound valid for all inputs of length n.

• Average case – time bound valid on average – requires
a distribution of inputs.

• Amortized – worst case time averaged over a sequence
of operations.

• Others – best case, common case, cache miss

Fundamentals - Lecture 2 36

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 250,000

500,000

750,000

1,000,000

N

O(n^2) algorithm

O(n) algorithm

Estimating Order by Plotting

se
co

nd
s

7

Fundamentals - Lecture 2 37

0

0

1

10

100

1,000

10,000

1 10 100
1,000

10,000

100,000

1,000,000

10,000,000

N

O(n^2) algorithm

O(n) algorithm

slope ≈ 2

slope ≈ 1

se
co

nd
s

Log-Log Plot

Fundamentals - Lecture 2 38

Property of Log/Log Plots

• On a linear plot, a linear function is a straight line

• On a log/log plot, any polynomial function is a straight
line!

› The slope ∆y/∆ x is the same as the exponent

=
=

= +
= +

Proof: Suppose

Then log log()

log log log

log log log

k

k

k

y cx

y cx

y c x

y c k x

horizontal axis

vertical axis slope
y intercept

Fundamentals - Lecture 2 39

Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations

Fundamentals - Lecture 2 40

Analyzing Recursive

Programs

1. Express the running time T(n) as a

recursive equation

2. Solve the recursive equation

• For an upper-bound analysis, you can

optionally simplify the equation to
something larger

• For a lower-bound analysis, you can

optionally simplify the equation to

something smaller

Fundamentals - Lecture 2 41

Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)

{ if (j-i < 0) return -1;

m := (i+j)/ 2;

if (x = a[m]) return m;

if (x < a[m]) then

return bfind(x, a, i, m-1);

else

return bfind(x, a, m+1, j); }

Call bfind(x,a,0,n-1) to get the result of binary search

What is the worst-case upper bound?

Okay, let’s prove it is θ(log n)…

Fundamentals - Lecture 2 42

Binary Search

Introduce some constants…

b = time needed for base case

c = time needed to get ready to do a recursive call

n = j-i+1 is the size of the subproblem

Running time T(n) satisfies:

function bfind(x:integer, a[]:integer array, i,j:integer)

{ if (j-i < 0) return -1;

m := (i+j)/ 2;

if (x = a[m]) return m;

if (x < a[m]) then

return bfind(x, a, i, m-1);

else

return bfind(x, a, m+1, j); }

cT(n/2)T(n)

bT(1)

+≤
≤

8

Fundamentals - Lecture 2 43

Solving Recursive Equation
(by Repeated Substitution)

O(logn)nclogbnclogT(1)

nclogT(n/n)

nclog)T(n/2T(n)

kc)T(n/2T(n)

cccT(n/8)

ccT(n/4)

cT(n/2)T(n)

22

2

2

nlog

k

2

=+=+=
+=

+≤

+≤

+++≤
++≤

+≤ Recurrence

T(n/2) < T(n/4) + c

T(n/4) < T(n/8) + c

General form

Let k = log2n

Fundamentals - Lecture 2 44

Solving Recursive Equations

by Induction

• Repeated substitution and telescoping

construct the solution

• If you know the closed form solution,

you can validate it by ordinary induction

• For the induction, may want to increase

n by a multiple (2n) rather than by n+1

Fundamentals - Lecture 2 45

Inductive Proof

2nclogb

2)lognc(logb

2clognclogb

cnclogb

cT(n)T(2n)

step Inductive

nclogbT(n)

assumption Inductive

1clogbb T(1)

case Base

2

22

22

2

2

2

+≤
++≤

++≤
++≤

+≤

+≤

+=≤

