

Mathematical Background

- · Today, we will review:
 - Logs and exponents and series
 - Asymptotics and order of magnitude notation

2

Solving recursive equations

Powers of 2 · Many of the numbers we use will be powers of 2 · Binary numbers (base 2) are easily represented in digital computers > each "bit" is a 0 or a 1 > 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁸=256, ... > an n-bit wide field can hold 2ⁿ positive integers: • $0 \le k \le 2^{n}-1$

3

Fundamentals - Lecture 2

• So g is an upper bound. (f could be much smaller than g.)

Fundamentals - Lecture 2

30

$ \begin{array}{c} 16n^3 \log_8(10n^2) + 100n^2 \\ \hline \\ 16n^3 \log_8(10n^2) \\ \Rightarrow n^3 \log_8(10n^2) \\ \Rightarrow n^3 \log_8(10n^2) \\ \Rightarrow n^3 \log_8(10) + \log_8(n^2) \\ \hline \\ 16n^3 \log_8(10n^2) \\ \Rightarrow n^3 \log_8(10) + \log_8(n^2) \\ \Rightarrow n^3 \log_8(n) \\ \Rightarrow n^3 \log(n) \\ \Rightarrow n^3 $

Solving Recursive Equation (by Repeated Substitution)		
$T(n) \leq T(n/2) + c$	Recurrence	
$\leq T(n/4) + c + c$	$T(n/2) \leq T(n/4) + c$	
\leq T(n/8)+c+c+c	$T(n/4) \leq T(n/8) + c$	
$T(n) \leq T(n/2^k) + kc$	General form	
$T(n) \leq T(n/2^{\log_2 n}) + clog_2 n \text{Let } k = \log_2 n$		
$= T(n/n) + clog_2n$		
$= T(1) + clog_2n = b + clog_2n = O(logn)$		
Fundamentals - Lecture 2		

Solving Recursive Equations by Induction

- Repeated substitution and telescoping construct the solution
- If you know the closed form solution, you can validate it by ordinary induction
- For the induction, may want to increase n by a multiple (2n) rather than by n+1

Fundamentals - Lecture 2

44

	Inductive Proof	
_	Base case	
	$T(1) \le b = b + clog_2 1$	
	Inductive assumption	
	$T(n) \le b + clog_2 n$	
	Inductive step	
	$T(2n) \leq T(n) + c$	
	$\leq b + clog_2n + c$	
	\leq b + clog ₂ n + clog ₂ 2	
	\leq b+c(log ₂ n+log ₂ 2)	
	\leq b + clog ₂ 2n	
	Fundamentals - Lecture 2	45