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Fundamentals

CSE 326

Data Structures

Lecture 2
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Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations 
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Powers of 2

• Many of the numbers we use will be powers 

of 2

• Binary numbers (base 2) are easily 

represented in digital computers

› each "bit" is a 0 or a 1

› 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, …

› an n-bit wide field can hold 2n positive integers:

• 0 ≤ k ≤ 2n-1
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Unsigned binary numbers

• Each bit position represents a power of 2

• For unsigned numbers in a fixed width field

› the minimum value is 0

› the maximum value is 2n-1, where n is the number 
of bits in the field

• Fixed field widths determine many limits

› 5 bits = 32 possible values (25 = 32)

› 10 bits = 1024 possible values (210 = 1024)
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Binary and Decimal
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1 1 3

1 0 0 1 9

1 0 1 0 10

1 1 1 1 15

0 0 0 0 161

1 1 1 1 311

1 1 1 1 127111

1 1 1 1 2551111
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Logs and exponents

• Definition: log2 x = y means x = 2y

› the log of x, base 2, is the value y that gives x 
= 2y

› 8 = 23, so log28 = 3

› 65536= 216, so log265536 = 16

• Notice that log2x tells you how many bits 
are needed to hold x values
› 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255

› log2256 = 8
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2x and log2x

x = 0:.1:4
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

2x and log2x

x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')
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Floor and Ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

      2232.722.7 =−=−=

      2222.332.3 =−=−=
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Facts about Floor and Ceiling
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Example: log2x and tree depth

• 7 items in a binary tree, 3 = log27+1 levels

4
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5 71 3
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Properties of logs (of the 

mathematical kind)
• We will assume logs to base 2 unless 

specified otherwise

• log AB = log A + log B

• Proof:

› A=2log
2
A and B=2log

2
B

› AB = 2log
2
A • 2log

2
B = 2log

2
A+log

2
B

› so log2AB = log2A + log2B

› note: log AB ≠≠≠≠ log A•log B
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Other log properties

• log A/B = log A – log B

• log (AB) = B log A

• log log X < log X < X for all X > 0 

› log log X = Y means

› log X grows slower than X

• called a “sub-linear” function

X2
Y2 =
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A log is a log is a log

• Any base x log is equivalent to base 2 log 

within a constant factor
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Arithmetic Series

•

• The sum is

› S(1) = 1

› S(2) = 1+2 = 3

› S(3) = 1+2+3 = 6

•

∑
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Algorithm Analysis

• Consider the following program 

segment:
x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at the end? 
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Analyzing the Loop

• Total number of times x is incremented 
is executed =

• Congratulations - You’ve just analyzed 
your first program!
› Running time of the program is proportional 

to N(N+1)/2 for all N

› O(N2)
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Other Important Series 

• Sum of squares: 

• Sum of exponents:

• Geometric series:
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Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations 
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Motivation for Algorithm 

Analysis
• Suppose you are 

given two algorithms 

A and B for solving a 

problem

• The running times 

TA(N) and TB(N) of A 

and B as a function of 

input size N are given

TA

TB

R
u

n
 T

im
e

Input Size N

Which is better?
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More Motivation

• For large N, the running time of A and B 
is:

Now which 

algorithm would 

you choose?R
u

n
 T

im
e

Input Size N

TA(N) = 50N

TB(N) = N2
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Asymptotic Behavior

• Asymptotic behavior refers to what 
happens as as N → ∞, regardless of 
what happens for small N

• Performance for small input sizes may 
matter in practice, if you are sure that 
small N will be common forever

• We will compare algorithms based on 
how they scale for large values of N

Fundamentals - Lecture 2 23

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.
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Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.
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Which Function Grows Faster?

n0.1 log nvs.
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Which Function Grows Faster?

n0.1 log nvs.

Fundamentals - Lecture 2 27

Which Function Grows Faster?

5n5 n!vs.

Fundamentals - Lecture 2 28

Which Function Grows Faster?

5n5 n!vs.
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Order Notation

• Mainly used to express upper bounds on time 

of algorithms. “n” is the size of the input.

• Examples

› 3n3+57n2+34=O(n3)

› 10000n + 10  n log2 n = O(n log n)

› .00001 n2 ≠ O(n log n)

• Order notation ignores constant factors and 
low order terms.
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Big-O

• Def: f(n) = O(g(n)) if there exists 

positive constants c and n0 such that for 

all N > n0, f(N) ≤ cg(N).

• In other words, for large enough n, g is 
always larger than f.

• So g is an upper bound. (f could be 
much smaller than g.)
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• Eliminate 

low order 
terms

• Eliminate 
constant 

coefficients
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Some Basic Time Bounds

• Constant time is O(1)

• Logarithmic time is O(log n)

• Linear time is O(n)

• Quadratic time is 0(n2)

• Cubic time is O(n3)

• Polynomial time is O(nk) for some k.

• Exponential time is O(cn) for some c > 1.
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Other asymptotics

• Big-Omega:  f(n) = Ω(g(n))

› f(n) > c g(n) for some c > 0 & large enough n.

• Big-Theta: f(n) = Θ(g(n))

› f(n) = O(g(n)) and f(n) = Ω(g(n))

• Little-O: f(n) = o(g(n))

› For all c > 0 there is nc such that for all n > nc, 
f(n) < c g(n) 

› Limit formulation: 0f(n)/g(n)limn =∞→
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Conventions of Order Notation
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Kinds of Analysis

• Asymptotic – uses order notation, ignores constant 
factors and low order terms.

• Upper bound vs. lower bound

• Worst case – time bound valid for all inputs of length n.

• Average case – time bound valid on average – requires 
a distribution of inputs.

• Amortized – worst case time averaged over a sequence 
of operations.

• Others – best case, common case, cache miss
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Property of Log/Log Plots

• On a linear plot, a linear function is a straight line

• On a log/log plot, any polynomial function is a straight 
line!

› The slope ∆y/∆ x is the same as the exponent

=
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= +
= +

Proof: Suppose 

Then log log( )
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Mathematical Background

• Today, we will review:

› Logs and exponents and series

› Asymptotics and order of magnitude notation

› Solving recursive equations 
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Analyzing Recursive 

Programs

1. Express the running time T(n) as a 

recursive equation

2. Solve the recursive equation

• For an upper-bound analysis, you can 

optionally simplify the equation to 
something larger

• For a lower-bound analysis, you can 

optionally simplify the equation to 

something smaller
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Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)

{   if (j-i < 0) return -1;

m := (i+j)/ 2;

if (x = a[m]) return m;

if (x < a[m]) then

return bfind(x, a, i, m-1);

else

return bfind(x, a, m+1, j); }

Call bfind(x,a,0,n-1) to get the result of binary search

What is the worst-case upper bound?

Okay, let’s prove it is θ(log n)…
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Binary Search

Introduce some constants…

b = time needed for base case

c = time needed to get ready to do a recursive call

n = j-i+1 is the size of the subproblem  

Running time T(n) satisfies:

function bfind(x:integer, a[]:integer array, i,j:integer)

{   if (j-i < 0) return -1;

m := (i+j)/ 2;

if (x = a[m]) return m;

if (x < a[m]) then

return bfind(x, a, i, m-1);

else

return bfind(x, a, m+1, j); }

cT(n/2)T(n)

bT(1)

+≤
≤
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Solving Recursive Equation 
(by Repeated Substitution)

O(logn)nclogbnclogT(1)

nclogT(n/n)

nclog)T(n/2T(n)

kc)T(n/2T(n)

cccT(n/8)

ccT(n/4)

cT(n/2)T(n)
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+≤ Recurrence

T(n/2) < T(n/4) + c

T(n/4) < T(n/8) + c

General form

Let k = log2n

Fundamentals - Lecture 2 44

Solving Recursive Equations 

by Induction

• Repeated substitution and telescoping 

construct the solution

• If you know the closed form solution, 

you can validate it by ordinary induction

• For the induction, may want to increase 

n by a multiple (2n) rather than by n+1
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Inductive Proof

2nclogb

2)lognc(logb

2clognclogb

cnclogb

cT(n)T(2n)

step Inductive

nclogbT(n)

assumption Inductive

1clogbb T(1)

case Base
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