

Mathematical Background

Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
, each "bit" is a 0 or a 1
, $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{8}=256, \ldots$
, an n-bit wide field can hold 2^{n} positive integers:

$$
\cdot 0 \leq k \leq 2^{n-1}
$$

Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field , the minimum value is 0
, the maximum value is $2^{n}-1$, where n is the number of bits in the field
- Fixed field widths determine many limits
, 5 bits $=32$ possible values $\left(2^{5}=32\right)$
, 10 bits $=1024$ possible values $\left(2^{10}=1024\right)$

Binary and Decimal

Logs and exponents

- Definition: $\log _{2} x=y$ means $x=2^{y}$
, the \log of x, base 2 , is the value y that gives x $=2^{y}$
, $8=2^{3}$, so $\log _{2} 8=3$
, $65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} x$ tells you how many bits are needed to hold x values
, 8 bits holds 256 numbers: 0 to $2^{8-1}=0$ to 255
- $\log _{2} 256=8$

Fundamentals - Lecture 2

Floor and Ceiling

$\lfloor X\rfloor$ Floor function: the largest integer $\leq X$
Facts about Floor and Ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

Example: $\log _{2} \mathrm{x}$ and tree depth

- 7 items in a binary tree, $3=\left\lfloor\log _{2} 7\right\rfloor+1$ levels

Properties of logs (of the mathematical kind)

\qquad

- We will assume logs to base 2 unless specified otherwise
- $\log A B=\log A+\log B$
- Proof:
, $A=2^{\log _{2} A}$ and $B=2^{\log _{2} B}$
, $A B=2^{\log _{2} A \cdot} \cdot 2^{\log _{2} B}=2^{\log _{2} A+\log _{2} B}$
, so $\log _{2} A B=\log _{2} A+\log _{2} B$
, note: $\log A B \neq \log A \cdot \log B$

Other log properties

- $\log A / B=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- $\log \log X<\log X<X$ for all $X>0$
, $\log \log X=Y$ means $2^{2^{Y}}=X$
, $\log X$ grows slower than X
- called a "sub-linear" function

Arithmetic Series

- $\mathrm{S}(\mathrm{N})=1+2+\ldots+\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{i}$
- The sum is
, $S(1)=1$
, $S(2)=1+2=3$
, $S(3)=1+2+3=6$
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad$ Why is this formula useful?

Analyzing the Loop

- Total number of times x is incremented is executed =

$$
1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
, Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
, $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Other Important Series

- Sum of squares: $\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}$ for large N
- Sum of exponents: $\sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|}$ for large N and $\mathrm{k} \neq-1$
- Geometric series:

$$
\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}
$$

Mathematical Background

- Today, we will review:
, Logs and exponents and series
, Asymptotics and order of magnitude notation
, Solving recursive equations

Motivation for Algorithm Analysis

- Suppose you are given two algorithms A and B for solving a problem
- The running times $T_{A}(N)$ and $T_{B}(N)$ of A and B as a function of input size N are given

Asymptotic Behavior

- Asymptotic behavior refers to what happens as as $N \rightarrow \infty$, regardless of what happens for small N
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever
- We will compare algorithms based on how they scale for large values of N

Which Function Grows Faster?

$$
n^{3}+2 n^{2} \quad \text { vs. } 100 n^{2}+1000
$$

Which Function Grows Faster?			
$5 \mathrm{n}^{5}$	vs.	n !	

Order Notation

- Mainly used to express upper bounds on time of algorithms. " n " is the size of the input.
- Examples
, $3 n^{3}+57 n^{2}+34=O\left(n^{3}\right)$
, $10000 n+10 n \log _{2} n=O(n \log n)$
, . $00001 n^{2} \neq O(n \log n)$
- Order notation ignores constant factors and low order terms.

Big-O

- Def: $f(n)=O(g(n))$ if there exists positive constants c and n_{0} such that for all $\mathrm{N}>\mathrm{n}_{0}, \mathrm{f}(\mathrm{N}) \leq \mathrm{cg}(\mathrm{N})$.
- In other words, for large enough n, g is always larger than f .
- So g is an upper bound. (f could be much smaller than g.)
$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)$

	$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}$
- Eliminate	$\Rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right)$
low order	$\Rightarrow n^{3} \log _{8}\left(10 n^{2}\right)$
terms	$\Rightarrow n^{3}\left[\log _{8}(10)+\log _{8}\left(n^{2}\right)\right]$
- Eliminate	$\Rightarrow n^{3} \log _{8}(10)+n^{3} \log _{8}\left(n^{2}\right)$
constant	$\Rightarrow n^{3} \log _{8}\left(n^{2}\right)$
coefficients	$\Rightarrow n^{3} 2 \log _{8}(n)$
	$\Rightarrow n^{3} \log _{8}(n)$
	$\Rightarrow n^{3} \log _{8}(2) \log (n)$
	$\Rightarrow n^{3} \log ^{2}(n)$
Fundamentals - Lecture 2	

Some Basic Time Bounds

- Constant time is $\mathrm{O}(1)$
- Logarithmic time is $\mathrm{O}(\log \mathrm{n})$
- Linear time is $\mathrm{O}(\mathrm{n})$
- Quadratic time is $0\left(\mathrm{n}^{2}\right)$
- Cubic time is $O\left(\mathrm{n}^{3}\right)$
- Polynomial time is $\mathrm{O}\left(\mathrm{n}^{k}\right)$ for some k .
- Exponential time is $\mathrm{O}\left(\mathrm{c}^{n}\right)$ for some $\mathrm{c}>1$.

Other asymptotics

- Big-Omega: $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$
, $f(n) \geq c g(n)$ for some $c>0$ \& large enough n.
- Big-Theta: $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
, $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- Little-O: $\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$
, For all $c>0$ there is n_{c} such that for all $n>n_{c}$, $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$
, Limit formulation: $\lim _{n \rightarrow \infty} f(n) / g(n)=0$

Kinds of Analysis

- Asymptotic - uses order notation, ignores constant factors and low order terms.
- Upper bound vs. lower bound
- Worst case - time bound valid for all inputs of length n .
- Average case - time bound valid on average - requires a distribution of inputs.
- Amortized - worst case time averaged over a sequence of operations.
- Others - best case, common case, cache miss

Conventions of Order Notation

Order notation is not symmetric: write $2 n^{2}+n=O\left(n^{2}\right)$ but never $O\left(n^{2}\right)=2 n^{2}+n$
The expression $O(f(n))=O(g(n))$ is equivalent to $f(n)=O(g(n))$
The right-hand side is a "cruder" version of the left:
$18 n^{2}=O\left(n^{2}\right)=O\left(n^{3}\right)=O\left(2^{n}\right)$
$18 n^{2}=\Omega\left(n^{2}\right)=\Omega(n \log n)=\Omega(n)$

Estimating Order by Plotting

Fundamentals - Lecture 2
36

Mathematical Background

- Today, we will review:
, Logs and exponents and series
, Asymptotics and order of magnitude notation
, Solving recursive equations

Binary Search

function bfind(x :integer, $a[]$:integer array, $i, j: i m e r)$
i if ($j-i<0$) return -1 ;
m := (i+j)/ 2;
if ($x=a[m]$) return m;
if ($x<a[m]$) then
return bfind(x, a, i, m-1);
else
return bfind(x, $a, m+1, j)$; \}
Call bfind($x, a, 0, n-1$) to get the result of binaryearch
What is the worst-case upper bound?
Okay, let's prove it is $\theta(\log n) \ldots$

Analyzing Recursive

 Programs1. Express the running time $T(n)$ as a recursive equation
2. Solve the recursive equation

- For an upper-bound analysis, you can optionally simplify the equation to something larger
- For a lower-bound analysis, you can optionally simplify the equation to something smaller

Fundamentals - Lecture 2

Binary Search

function bfind (x:integer, a[]:integer array, $i, j: i m g e r$)
if ($j-\mathrm{i}<0$) return -1
$m:=(i+j) / 2$
if $(x=a[m])$
if $(x<a[m])$ then
$f(x<a[m])$ then
($\mathbf{x}, \mathrm{a}, \mathrm{i}, \mathrm{m}-1$);
else
return bfind ($\mathrm{x}, \mathrm{a}, \mathrm{m}+1, \mathrm{j}$) ;)
Introduce some constants...
$b=$ time needed for base case
$\mathrm{c}=$ time needed to get ready to do a recursive call $n=j-i+1$ is the size of the subproblem
Running time $T(n)$ satisfies: $T(1) \leq b$

$$
T(n) \leq T(n / 2)+c
$$

Fundamentals - Lecture 2

Solving Recursive Equation (by Repeated Substitution)	
$\mathrm{T}(\mathrm{n}) \leq \mathrm{T}(\mathrm{n} / 2)+\mathrm{C}$	Recurrence
$\leq T(n / 4)+c+c$	$T(n / 2) \leq T(n / 4)+\mathrm{C}$
$\leq T(n / 8)+c+c+c$	$T(n / 4) \leq T(n / 8)+\mathrm{C}$
$T(n) \leq T\left(n / 2^{k}\right)+k c$	General form
$T(n) \leq T\left(n / 2^{\log _{2} n}\right)+\operatorname{cog}_{2} n$	Let $\mathrm{k}=\log _{2} \mathrm{n}$
$=T(n / n)+\operatorname{cog}_{2} \mathrm{n}$	
$=\mathrm{T}(1)+\operatorname{cog}_{2} \mathrm{n}=\mathrm{b}+\mathrm{c}$	$\log _{2} \mathrm{n}=\mathrm{O}(\log \mathrm{n})$
Fundamenals - Lecture 2	

Solving Recursive Equations by Induction

- Repeated substitution and telescoping construct the solution
- If you know the closed form solution, you can validate it by ordinary induction
- For the induction, may want to increase n by a multiple (2 n) rather than by $\mathrm{n}+1$

Inductive Proof

Base case
$\mathrm{T}(1) \leq \mathrm{b}=\mathrm{b}+\mathrm{clog}_{2} 1$
Inductive assumption
$T(n) \leq b+\operatorname{cog}_{2} n$
Inductive step
$T(2 n) \leq T(n)+c$
$\leq b+\operatorname{cog}_{2} n+c$
$\leq b+\operatorname{clog}_{2} \mathrm{n}+\mathrm{clog}_{2} 2$
$\leq b+c\left(\log _{2} n+\log _{2} 2\right)$
$\leq b+\operatorname{cog}_{2} 2 n$
Fundamentals - Lecture 2

Inductive Proof	
Base case	
$\mathrm{T}(1) \leq \mathrm{b}=\mathrm{b}+\mathrm{clog}_{2} 1$	
Inductive assumption	
$\mathrm{T}(\mathrm{n}) \leq \mathrm{b}+\mathrm{clog}_{2} \mathrm{n}$	
Inductive step	
$T(2 n) \leq T(n)+c$	
$\leq b+\operatorname{cog}_{2} n+c$	
$\leq \mathrm{b}+\mathrm{clog}_{2} \mathrm{n}+\mathrm{clog}_{2} 2$	
$\leq \mathrm{b}+\mathrm{c}\left(\log _{2} \mathrm{n}+\log _{2} 2\right)$	
$\leq \mathrm{b}+\mathrm{clog}_{2} 2 \mathrm{n}$	
Fundamentals - Lecture 2	45

