
CSE 326
Winter 2008

Assignment 6
Due 3/5/08

For all algorithm and data structure design problems please provide elegant pseudocode and an
adequate explanation of your methods. If is often helpful to include small examples demonstrating
the method. Put your name at the top of each sheet of paper that you turn in.

1. Some project planning applications use a labeled acyclic directed graphs to represent the jobs
and job times on a project. A vertex in the graph represents a job and its label represents
the time the job will take. A directed edge from one vertex to another represents the fact
the job represented by the first vertex must be completed before the job represented by the
second vertex. Assume we have a directed acyclic graph G = ({1, 2, ..., n}, E) with vertices
labeled by non-negative integers c1, c2, ..., cn. The label ci represents the time job i will
take. Assume futher that every vertex is reachable by some path from vertex 1, vertex 1 has
in-degree 0, vertex n is reachable by some path from every vertex, and n has out degree 0.
Vertex 1 represent the beginning of the project and vertex n represent the end of the project.
The length of a path from 1 to n is the sum of the labels on the vertices along the path. Design
an algorithm based on the topological sort algorithm to find the length of a longest path from
1 to n in the graph. The length of the longest path represents how long the entire project
will take. Sometimes a longest path is called a critical path. Your algorithm should use the
adjacency list representation of a graph. The labels can be stored in an additional array. Your
algorithm should run in linear time. Hint: ultimately you will need to compute the length of
the longest path from 1 to every other vertex. In the topological sort, when a vertex achieves
in-degree 0, the length of the longest path from 1 to it should be known.

2. Consider the following sequence of disjoint union / find operations: union(1,2), union(2,3),
union(3,4), union(4,5), union(5,6), union(6,7), union(7,8), union(9,10), union(11,12), union(13,14),
union(15,16), union(1,10), union(1,12), union(14,15), union(1,16). In this problem we don’t
assume that the inputs to union are roots, so that two find operations are performed during the
union to find the roots before pointing one root to another. Show the resulting up tree after
these operations for each case below. In each case count the number of nodes visited in all
the find operations. In the case of path compression some nodes are visited twice.

(a) There is no path compression on the finds and the root of the first argument points to
the root of the second argument.

(b) There is path compression on the finds and the root of the first argument points to the
root of the second argument.

(c) There is no path compression on the finds and weighted union is used.

1



(d) There is path compression on the finds and weighted union is used.

2


