
CSE 326
Winter 2008

Assignment 3
Due 2/1/08, Friday

For all algorithm and data structure design problems please provide elegant pseudocode and an
adequate explanation of your methods. If is often helpful to include small examples demonstrating
the method. Put your name at the top of each sheet of paper that you turn in.

1. Design a cursor implementation of a circular doubly linked list of integers. A node in a circu-
lar doubly linked list has three fields previous, next, and data. The nodes are arranged in the
circular doubly linked list so that by following the next pointers from a node you eventually
return to that node, and by following the previous pointers from a node you eventually return
to that node. Remember that the cursor implementation only uses arrays and array indices to
implement pointers. The dot notation is not allowed.

(a) Give an initialization of your cursor data structure where all nodes are found on a free
list.

(b) Implement insert(p: integer, x: integer), where p is a “pointer” into a circular doubly
linked list, and x is a data value. In this operation, a new node with data value x is
inserted just before p in the list. Be sure to handle the case where the list is empty
correctly.

(c) Implement delete(p:integer):integer. In this operation you can assume the list is nonempty.
The node pointed to by p is removed from the list and its data is returned. Don’t forget
to return the node pointed to by p to the free list when done.

2. On the problem about Horner’s Rule from the first homework, we represented a polynomial
by storing its coefficients in an array. This method of representation is not efficient if the poly-
nomial is “sparse,” meaning the number of nonzero coefficients is much less than the degree
of the polynomial. We can instead represent such polynomials as a linked list in which each
node represents a nonzero term, and the node exponents are in increasing order. The structure
of each node is: record poly: (exp : integer, coef : integer, next : poly pointer). For exam-
ple, the sparse polynomial 10 + 4x2 + 8x23 is represented as p → |0|10| → |2|4| → |23|8|
(where p: poly pointer). The zero polynomial is represented by the null pointer. Let p(x) =
a1x

c1 +a2x
c2 + · · ·+amxcm and q(x) = b1x

d1 + b2x
d2 + · · ·+ bnxdn be two sparse polyno-

mials represented in this way. We can multiply p(x) and q(x) to yield a new polynomial r(x)
by r(x) = r′(x) + r′′(x), with r′(x) = (a1x

c1)q(x) = a1b1x
c1+d1 + a1b2x

c1+d2 + · · · +
a1bnxc1+dn and r′′(x) = (a2x

c2 + · · · + amxcm)q(x). Design a recursive pseudocode func-
tion [with signature Mult(P, Q : poly pointer): poly pointer] to multiply
two sparse polynomials in this manner. The function takes pointers to the two polynomials

1

p(x) and q(x) and returns a pointer to r(x). You are given a function Add(P, Q : poly
pointer): poly pointer that you can use to add two polynomials. Assume that
Add is destructive, that is, does not preserve its arguments. Your Mult function should also
be destructive.

(a) Analyze the running time of Mult in terms of m and n the number of terms in p(x)
and q(x) respectively. Assume that Add takes O(n + m) steps. Because it is recursive,
your time bound should first be defined by a recurrence, then the recurrence should be
solved.

(b) Suppose we want to multiply two polynomials that have a different number of nonzero
terms. Why does it matter (in terms of running time) which we choose as p(x) and
which as q(x)?

(c) (Optional) Design and analyze a recursive sparse polynomial multiplication algorithm
that uses divide and conquer and runs much faster than the one described above. (There
are no additional points for optional parts. However, we will keep track of who does
optional part to help in borderline grading cases.)

2

