
CSE 326
Winter 2008

Assignment 1
Due 1/16/08

For all algorithm and data structure design problems please provide elegant pseudocode and an
adequate explanation of your methods. If is often helpful to include small examples demonstrating
the method. Put your name at the top of each sheet of paper that you turn in.

1. 2.11 on page 52.

2. The classic way to evaluate a polynomial is called Horner’s rule which can be stated recur-
sively as follows. Let p(x) = a0 + a1x + a2x

2 + · · · + anxn. To compute p(c) for some
constant c, first evaluate q(c) where q(x) = a1 + a2x + · · · + anxn−1 recursively, then
p(c) = a0 + cq(c).

(a) Provide a base case for this method, and show the method works mathematically.

(b) For a polynomial of degree n, as a function of n, how many additions and how many
multiplications are used to evaluate the polynomial in Horner’s rule.

(c) Provide an elegant pseudocode function for Horner’s rule where the data coefficients
are stored in an array A[0..n], with A[i] containing ai.

3. Consider the following general recurrence T (1) ≤ d and T (n) ≤ aT (n/b) + cn for n ≥ 1.
Show that:

(a) If a < b then T (n) = O(n).

(b) If a = b then T (n) = O(n log n).

(c) If a > b then T (n) = O(nlogb a) (n to the power log base b of a).

You may assume that n is a power of b in your argument. A very good argument would
determine the constants and low order terms hidden by the big O notation.

4. Generally speaking, computers do not have built-in the exponentiation operator, mn, for in-
tegers m and n. One way to compute exponentiation is iteratively multiply m into a running
product n times. This would have n − 1 multiplications. Design a recursive algorithm that
computes mn using only O(log n) multiplications. For simplicity, assume that integer multi-
plication has infinite precision. Don’t forget to explain why your algorithm is correct and has
O(log n) multiplications.

1


