
CSE 326: Data Structures
Assignment #6
November 17, 2008
due: Wednesday, November 26, 11:30 a.m.

The purpose of this programming assignment is to implement Dijkstra’s algorithm using heaps. Here are
the details.

1. Implement a heap. You may assume that the heap never has more than 500 entries. You may assume
that the Key and Info fields each have type integer. You will implement all the priority queue operations
of Section 9.1, plus the extra operation DecreasePriority(i, K), which decreases the key at heap index i

to the value K, making any necessary changes to the heap as a result of this decrease. (If K is greater
than the current key at this index, the operation does nothing.) Be sure that your implementation of
this new operation runs in time O(log N), where N is the current heap size.

2. Implement Algorithm 12.6 on page 449 using a heap to manage the Distance values for the members
of U . Your implementation should run in time O((n + e) logn), where n and e are the numbers of
vertices and edges, respectively, of the input graph. To do this you will need to represent the graph by
its adjacency lists. You may assume that vertices are numbered consecutively starting with 0 and that
vertex 0 is the source, so that you are computing the least cost paths from vertex 0 to every vertex in
the graph.

The command line that runs your program should take two filenames as parameters, the first being the
input file and the second the output file. The input file that describes the directed graph will have the
following format:

0:2,15;5,3;
1:
2:0,3;
. . .

where, in this example, the neighbors of vertex 0 are vertices 2 and 5, with c(0,2)=15 and c(0, 5) = 3, and
vertex 1 has no neighbors.

The output file will have the following format:

1:Distance(1),Parent(1)
2:Distance(2),Parent(2)
3:Distance(3),Parent(3)
. . .

where Distance(i) is the cost of a least cost path from 0 to i, and Parent(i) is the vertex that precedes i

on that least cost path. (From this representation, one can easily reconstruct the entire least cost path by
working backwards from i to 0.) If there is no path from 0 to i, the i-th output line should read “i:infinity,-”.


