
CSE 326: Data Structures
Assignment #2
October 3, 2008
due: Friday, October 10

The purpose of this programming assignment is to give you some experience in how to
implement stacks, how to implement binary trees, and how stacks are used to implement
recursion. In summary, you will be writing a sorting algorithm that works as follows: you
will insert all the integer keys to be sorted into an initially empty binary search tree T , and
then traverse T to retrieve the keys in sorted order. Instead of implementing the traversal
recursively, you will use a stack.

1. Implement a stack class. The methods in the stack class will be the usual ones from
page 74. You may choose whether to use the contiguous memory or linked memory
implementation of your stack.

2. Implement a binary tree class. The methods in the binary tree class will include ones
that (a) return the key at the root, (b) return the left subtree, (c) return the right
subtree, (d) test if the tree is empty, (e) construct an empty tree, and (f) any other
method that you find absolutely necessary. Each node in your implementation should
have fields for a key and left and right subtrees, but should not contain a parent pointer.

3. Implement Algorithm 6.8 using your binary tree class. You may leave out the parts
dealing with the “info” field; for our purposes the only information is the key. Because
you will want to allow duplicate keys in your tree, you should also omit the lines

if Key(P) = K then

Info(P) <- I

return

4. What type of tree traversal do you need to implement to retrieve the keys from your
binary search tree in sorted order? Implement it using your stack class to avoid the
recursion. Here are questions to think about that will help you work out the use of
the stack: What type of object needs to be stored on the stack? Exactly which object
needs to be pushed when you are about to start the traversal of the left subtree? When
do you pop the stack and what do you do with the result that is popped? What do
you do when the stack is empty?

5. Use file I/O for the interface: read the integers to be sorted from an input file and
write the sorted integers into an output file. The filenames are to be provided by the
user. The input and output files should each contain one integer per line, with nothing
else in the file.

Turnin instructions will follow later this week.


