CSE 326 Data Structures

Dave Bacon
Final Review

Stay on Target....Stay on Target
Logistics

- Hand in Homework 7
- Friday: Games and NP completeness

- Final for Section A:
 Thursday March 15, 8:30-10:20 MGH 231
Final Logistics

- Example Final Example (up soon)
- Final Exam Review Material (up soon)
- Homework 7 will not be returned before final, but homework solution will be posted shortly

- Regular office hours next week, plus, I’ll be in my office (CSE 460) 9-5. Stop by or email for a good time to meet.
Final Material

• "Everything is fair game”
• BUT 80-90% of the material will come from material covered after the midterm
 \[\overrightarrow{\text{splay trees}}\]
• This means: Splay trees onward
• This means: Up to Kruskal’s
 \[\overleftarrow{\text{Floyd-Warshall}}\]
 \[\text{Huffman Coding.}\]
Final Material Rough Map

- Stuff before the midterm
- Splay Trees, B-Trees, Memory Hierarchy
 - Hashing
 - Disjoint Sets
 - Sorting
 - Graph Algorithms
Splay Trees

- Blind adjusting version of AVL trees
 - Why worry about balances? Just rotate anyway!
- Amortized time per operations is $O(\log n)$
- Worst case time per operation is $O(n)$
 - But guaranteed to happen rarely

Insert/Find always rotate node to the root!
Splay: Zig-Zag*
Splay: Zig-Zig

The diagram shows a splay operation in a balanced binary search tree. The element with key k has been splayed, moving it closer to the root of the tree. The keys in the tree are g, x, y, z, w, X, and Z.
Special Case for Root: Zig
Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root
 - if node not found, splay what would have been its parent
Splay Operations: Insert

- Insert the node in normal BST manner
- Splay the node to the root
Splay Operations: Remove

Now what?
Join(L, R):
given two trees such that (stuff in L) < (stuff in R),
merge them:

Splay on the maximum element in L, then
attach R
Time to access:
1 ns per instruction

Cache
2-10 ns

Main Memory
40-100 ns

Disk
a few milliseconds (5-10 Million ns)

SRAM
8KB - 4MB

DRAM
up to 10GB

CPU
(has registers)

Disk

Main Memory

Cache
Solution: B*-Trees

- specialized M-ary search trees
 \[\text{binary}\]

- Each node has (up to) $M-1$ keys:
 - subtree between two keys x and y contains leaves with values v such that $x \leq v < y$

- Pick branching factor M such that each node takes one full {page, block} of memory
B⁺-Tree Properties

- Data is stored at the leaves
- All leaves are at the same depth and contains between \(\lceil L/2 \rceil \) and \(L \) data items
- Internal nodes store up to \(M-1 \) keys
- Internal nodes have between \(\lceil M/2 \rceil \) and \(M \) children
- Root (special case) has between 2 and \(M \) children (or root could be a leaf)

†These are technically B⁺-Trees
Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with \(L+1 \) items, **overflow**!
 - Split the leaf into two nodes:
 - original with \(\lceil (L+1)/2 \rceil \) items
 - new one with \(\lfloor (L+1)/2 \rfloor \) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1 \) items, **overflow**!

This makes the tree deeper!

3. If an internal node ends up with \(M+1 \) items, **overflow**!
 - Split the node into two nodes:
 - original with \(\lceil (M+1)/2 \rceil \) items
 - new one with \(\lfloor (M+1)/2 \rfloor \) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1 \) items, **overflow**!

4. Split an overflowed root in two and hang the new nodes under a new root
Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer than \(\lceil L/2 \rceil \) items, **underflow**!
 - Adopt data from a sibling; update the parent
 - If adopting won’t work, delete node and merge with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow**!
Hash Tables

- Constant time accesses!
- A **hash table** is an array of some fixed size, usually a prime number.
- General idea:

 ![Hash Table Diagram](image)

 - **Hash Function:** \(h(K) \)
 - **Table Size:** \(TableSize = \text{TableSize} - 1 \)
 - **Key Space:** (e.g., integers, strings)
 - **Customer ID:** \(Cust_ID \)
Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

- **Separate chaining**: All keys that map to the same hash value are kept in a list (or “bucket”).

Insert:
- 10
- 22
- 107
- 12
- 42
Open Addressing

Find 681

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>

Insert:
38
19
8
109
10

• Linear Probing: after checking spot \(h(k) \), try spot \(h(k) + 1 \), if that is full, try \(h(k) + 2 \), then \(h(k) + 3 \), etc.
Terminology Alert!

“Open Hashing” equals “Separate Chaining”

“Closed Hashing” equals “Open Addressing”

Weiss
Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
 \[\text{load factor } \lambda = \frac{\# \text{ keys}}{\text{size of table}} \]
- Expected # of probes (for large table sizes)
 - successful search: \[\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \]
 \[\lambda = \frac{1}{2} \] \(\approx 1.5 \) probes
 - unsuccessful search: \[\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right) \]
 \[\lambda = \frac{1}{2} \] \(2.5 \) probes
- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$
Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:

 \[
 \begin{align*}
 0^{\text{th}} \text{ probe} & = h(k) \mod \text{TableSize} \\
 1^{\text{st}} \text{ probe} & = (h(k) + 1) \mod \text{TableSize} \\
 2^{\text{nd}} \text{ probe} & = (h(k) + 4) \mod \text{TableSize} \\
 3^{\text{rd}} \text{ probe} & = (h(k) + 9) \mod \text{TableSize} \\
 \vdots & \\
 i^{\text{th}} \text{ probe} & = (h(k) + i^2) \mod \text{TableSize}
 \end{align*}
 \]
Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$

 $$(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}$$

 - by contradiction: suppose that for some $i \neq j$:

 $$(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$$

 $\Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}$

 $\Rightarrow (i^2 - j^2) \mod \text{size} = 0$

 $\Rightarrow [(i + j)(i - j)] \mod \text{size} = 0$

BUT size does not divide $(i-j)$ or $(i+j)$
Double Hashing

\[f(i) = i \times g(k) \]

where \(g \) is a second hash function

- Probe sequence:

 \(0^{th} \) probe = \(h(k) \mod \text{TableSize} \)

 \(1^{st} \) probe = \((h(k) + g(k)) \mod \text{TableSize} \)

 \(2^{nd} \) probe = \((h(k) + 2\times g(k)) \mod \text{TableSize} \)

 \(3^{rd} \) probe = \((h(k) + 3\times g(k)) \mod \text{TableSize} \)

 \ldots

 \(i^{th} \) probe = \((h(k) + i\times g(k)) \mod \text{TableSize} \)

[Rehashing]
Disjoint Sets

Chapter 8
Disjoint Union - Find

313, 323, ...

- Maintain a set of pairwise disjoint sets.
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}

- Each set has a unique name, one of its members
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}

\[\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \]

\text{Find}(4) \rightarrow 8
Union

- Union(x,y) – take the union of two sets named x and y
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 - Union(5,1)
 \{3,5,7,1,6\}, \{4,2,8\}, \{9\}, \{1,6\}
Find

• Find(x) – return the name of the set containing x.
 – $\{3, 5, 7, 1, 6\}$, $\{4, 2, 8\}$, $\{9\}$,
 – Find(1) = 5
 – Find(4) = 8
Simple Implementation

- Array of indices

```
1 2 3 4 5 6 7
0 1 0 7 7 5 0
```

Up[x] = 0 means x is a root.

Find(6) = 7
Weighted Union

- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^h.

- **Proof by induction**
 - **Basis**: $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step**: Assume true for all $h' < h$.

\[
W(T_1) \geq W(T_2) \geq 2^{h-1}
\]

Minimum weight up-tree of height h formed by weighted unions

\[
W(T) \geq 2^{h-1} + 2^{h-1} = 2^h
\]
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[n \geq 2^h \]
\[\log_2 n \geq h \]

- Find(x) in tree T takes $O(\log n)$ time.
Array Implementation

Diagram with nodes and edges, and a table below showing:

<table>
<thead>
<tr>
<th>up weight</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nifty Storage Trick

• Use the same array representation as before

• Instead of storing -1 for the root, simply store $-\text{size}$

[Read section 8.4, page 276]
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Diagram illustrating the process of path compression.
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, \(p \) union and find operations on a set of \(n \) elements have worst case complexity of \(\mathcal{O}(p \cdot \alpha(p, n)) \)

For all practical purposes this is amortized constant time:

\(\mathcal{O}(p \cdot 4) \) for \(p \) operations!

\(\mathcal{O}(\frac{4p}{p}) = \mathcal{O}(1) \)

- Very complex analysis – worse than splay tree analysis etc. that we skipped!
Given \(n \) comparable elements in an array, sort them in an increasing (or decreasing) order.

- **Simple algorithms:** \(O(n^2) \)
 - Insertion sort
 - Selection sort
 - Bubble sort
 - Shell sort
 - ...

- **Fancier algorithms:** \(O(n \log n) \)
 - Heap sort
 - Merge sort
 - Quick sort
 - ...

- **Comparison lower bound:** \(\Omega(n \log n) \)

- **Specialized algorithms:** \(O(n) \)
 - Bucket sort
 - Radix sort

- **Handling huge data sets**

- **External sorting**

- **Decision trees:**
Insertion Sort: Idea

- At the k^{th} step, put the k^{th} input element in the correct place among the first k elements.
- Result: After the k^{th} step, the first k elements are sorted.

Runtime:
- worst case : $O(n^2)$
- best case : $O(n)$
- average case : $O(n^2)$
Selection Sort: idea

- Find the smallest element, put it 1\(^{st}\)
- Find the next smallest element, put it 2\(^{nd}\)
- Find the next smallest, put it 3\(^{rd}\)
- And so on ...

$O(n^2)$
HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Build = N
Delete min = log N

Runtime: $O(N \log M)$
Merge Sort

1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge \(a1[1..n], a2[1..n]\)

\[\begin{align*}
i1 &= 1, \quad i2 = 1 \\
\text{While} \ (i1 < n, \ i2 < n) \{ \\
\quad \text{if} \ (a1[i1] < a2[i2]) \{ \\
\quad \quad \text{Next is} \ a1[i1] \\
\quad \quad i1++ \\
\quad \} \ \text{else} \{ \\
\quad \quad \text{Next is} \ a2[i2] \\
\quad \quad i2++ \\
\quad \}
\}\]

"The 2-pointer method"

Now throw in the dregs...
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S₁) and QuickSort(S₂)
4. Presto! S is sorted

Picking pivot, threshold [Weiss]
BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array `count` of size K, increment counts while traversing the input, and finally output the result.

Example
$K=5$. Input = (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Running time to sort n items?

$O(n+K)$
Fixing impracticality: RadixSort

- **Radix** = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything

- **Idea**: BucketSort on each digit, least significant to most significant (lsd to msd)
Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time

External sorting – Basic Idea:
- Load chunk of data into RAM, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples
Graphs

Chapter 9 in Weiss
Graph Definitions

In **directed** graphs, edges have a specific direction:

In **undirected** graphs, they don’t (edges are two-way):

\[v \text{ is adjacent to } u \text{ if } (u, v) \in E \]
Representation

- **adjacency matrix:**

 \[
 A[u][v] = \begin{cases}
 \text{weight} & \text{if } (u, v) \in E \\
 0 & \text{if } (u, v) \notin E
 \end{cases}
 \]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & > & 0 \\
2 & \text{ } & \text{ } & \text{ } & \text{ } \\
3 & \text{ } & \text{ } & \text{ } & \text{ } \\
4 & \text{ } & \text{ } & \text{ } & \text{ } \\
\end{array}
\]
Representation

- adjacency list:
Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?
Graph Traversals

• Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 – Must mark visited vertices so you do not go into an infinite loop!

• Either can be used to determine connectivity:
 – Is there a path between two given vertices?
 – Is the graph (weakly) connected?

• Which one:
 – Uses a queue?
 – Uses a stack?
 – Always finds the **shortest path** (for unweighted graphs)?
Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i,j}$, and vertex s, find the shortest paths from s to all vertices in G.
Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance
Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to \(\infty \)

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
 Select an unknown node \(b \) with the lowest cost
 Mark \(b \) as known
 For each node \(a \) adjacent to \(b \)
 \(a \)'s cost = \(\min(a \)'s old cost, \(b \)'s cost + cost of \((b, a)\))
Dijkstra’s Algorithm: a Greedy Algorithm

Greedy algorithms always make choices that currently seem the best

- Short-sighted – no consideration of long-term or global issues
- Locally optimal - does not always mean globally optimal!!
Minimum Spanning Trees

Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V, E') \) such that:

- \(E' \) is a subset of \(E \)
- \(|E'| = |V| - 1 \)
- \(G' \) is connected
- \(\sum_{(u,v) \in E'} c_{uv} \) is minimal

\(G' \) is a minimum spanning tree.

Applications: wiring a house, power grids, Internet connections
Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Greedy node

Kruskals’s Algorithm
Completely different!

Greedy edges
Prim’s algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “root”
 - mark it as known
 - Update cost of all its neighbors
2. While there are unknown nodes left in the graph
 a. Select an unknown node b with the smallest cost from some known node a
 b. Mark b as known
 c. Add (a, b) to MST
 d. Update cost of all nodes adjacent to b

Note: cost from some a, not from root
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

$G=(V,E)$
Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked

2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Doesn’t it sound familiar?